搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

里德堡原子多体相互作用的研究进展

张正源 张天乙 刘宗凯 丁冬生 史保森

引用本文:
Citation:

里德堡原子多体相互作用的研究进展

张正源, 张天乙, 刘宗凯, 丁冬生, 史保森

Research progress of Rydberg many-body interaction

Zhang Zheng-Yuan, Zhang Tian-Yi, Liu Zong-Kai, Ding Dong-Sheng, Shi Bao-Sen
PDF
HTML
导出引用
  • 多体量子系统的相互作用是研究量子信息科学必须要解决的瓶颈性问题之一. 里德堡(Rydberg)原子具有很大的电偶极矩, 使得它可以实现长程的相互作用, 为研究多体量子物理提供了有力的技术手段. 因而Rydberg原子多体系统是多体相互作用探究的理想平台, Rydberg原子多体相互作用的研究对多体量子系统的相互作用的性质研究和应用探究有着重要意义. 本文综述了关于Rydberg原子多体相互作用方面的研究, 介绍了由Rydberg原子的多体相互作用引起的Rydberg阻塞效应、Rydberg原子多体系统拉比频率的变化以及Rydberg原子多体系统呈现的特别的空间构型; 同时介绍了利用Rydberg原子多体相互作用实现一些应用的工作, 如实现单光子源、量子存储、实时单原子成像以及量子模拟等, 并讨论了Rydberg原子多体系统的研究方向和应用前景.
    The interaction of many-body quantum system is a critical problem to be solved in the field of quantum information science. Rydberg atoms have large dipole moment, enabling them to interact with others in a long range, thereby offering us a powerful tool for studying many-body quantum physics. Meanwhile, atoms in the ground state are stable, which makes it easy to manipulate them. Therefore, Rydberg-atom many-body system is an ideal platform for studying the interaction of many-body quantum system. Studies of Rydberg-atom many-body system may contribute to understanding the properties of many-body system and putting the interaction of many-body quantum system into practical applications. In this review, we introduce some studies of properties of interaction of Rydberg-atom many-body system, including the Rydberg excitation blockade, the variation of Rabi frequencies of the many-body system and special spatial distribution of Rydberg atoms in a many-body system. Firstly, the Rydberg excitation blockade, the most important property in the Rydberg-atom many-body system, indicates that atoms’ excitation will be suppressed in a certain range around one Rydberg excitation because the interaction between the Rydberg excitation and atoms leads the energy level to shift so that atoms cannot be excited by the same pulse. Secondly, there is a collective Rabi frequency in the system, which is proportional to the square of the number of atoms in the suppressed area. And additionally, because of the Rydberg blockade effect, Rydberg excitations in the ensemble cannot be at casual positions but a regular distribution is formed. Besides the studies of properties, several researches on the applications of interaction of Rydberg-atom many-body system are introduced, including single-photon source, quantum storage, single-atom imaging, quantum simulation, etc. These applications contribute to the development of quantum community and quantum computing, which may bring us a quantum-technology time. Finally, we discuss the future development of Rydberg-atom many-body system and its further applications. Further development includes the development of many-body system with a larger number of atoms, the development of many-body system of atoms with more than one electron, and some other specific subjects based on many-system, such as Rydberg dimer and topological phase. Also some promising applications such as in studying optimization problem by quantum annealing, may become true.
      通信作者: 丁冬生, dds@ustc.edu.cn
      Corresponding author: Ding Dong-Sheng, dds@ustc.edu.cn
    [1]

    Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5 115Google Scholar

    [2]

    Dudin Y O, Li L, Bariani F, Kuzmich A 2012 Nat. Phys. 8 790Google Scholar

    [3]

    Schauß P, Cheneau M, Endres M, Fukuhara T, Hild S, Omran A, Pohl T, Gross C, Kuhr S, Bloch I 2012 Nature 491 87Google Scholar

    [4]

    Li L, Kuzmich A 2016 Nat. Commun. 7 13618Google Scholar

    [5]

    Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2013 Phys. Rev. Lett. 110 103001Google Scholar

    [6]

    Günter G, Robert-de-Saint-Vincent M, Schempp H, Hofmann C S, Whitlock S, Weidemüller M 2012 Phys. Rev. Lett. 108 013002Google Scholar

    [7]

    Murray C R, Mirgorodskiy I, Tresp C, Braun C, Paris-Mandoki A, Gorshkov A V, Hofferberth S, Pohl T 2018 Phys. Rev. Lett. 120 113601Google Scholar

    [8]

    Keesling A, Omran A, Levine H, Bernien H, Pichler H, Choi S, Samajdar R, Schwartz S, Silvi P, Sachdev S, Zoller P, Endres M, Greiner M, Vuletić V, Lukin M D 2019 Nature 568 207Google Scholar

    [9]

    Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletić V, Lukin M D 2017 Nature 551 579Google Scholar

    [10]

    Ding D S, Busche H, Shi B S, Guo G C, Adams C S 2020 Phys. Rev. X 10 021023

    [11]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) p25

    [12]

    Christoph T 2017 Ph. D. Dissertation (Stuttgart: University of Stuttgart. Physical Institute)

    [13]

    Gallagher T F 1988 Rep. Prog. Phys. 51 143

    [14]

    Gallagher T F, Cooke W E 1979 Phys. Rev. Lett. 42 835Google Scholar

    [15]

    Cooke W E, Gallagher T F 1980 Phys. Rev. A 21 588

    [16]

    Born M, Oppenheimer J R 1927 Ann. Phys. 84 457

    [17]

    Thomas A 2008 Ph. D. Dissertation (Freiburg city: Faculty of Mathematics and Physics Albert Ludwigs University of Freiburg)

    [18]

    Browaeys A, Lahaye T 2020 Nat. Phys. 16 132Google Scholar

    [19]

    Balewski J B, Krupp A T, Gaj A, Hofferberth S, Löw R, Pfau T 2014 New J. Phys. 16 063012Google Scholar

    [20]

    Zeiher J, Schauß P, Hild S, Macrì T, Bloch I, Gross C 2015 Phys. Rev. X 5 031015

    [21]

    Tuchendler C, Lance A M, Browaeys A, Sortais Y R P, Grangier P 2018 arXiv:0805.3510 v2 [quant-ph]

    [22]

    Labeyrie G, Muller C A, Delande D, Miniatura C, Wilkowski D, Kaiser R 2003 Phys. Rev. Lett. 91 223904Google Scholar

    [23]

    Robicheaux F, Hernández J V 2005 Phys. Rev. A 72 063403Google Scholar

    [24]

    马文淦 2001 计算物理学 (合肥: 中国科学技术大学出版社) 第59页

    Ma W G 2001 Computational Physics (Hefei: Press of University of Science and Technology of China) p59

    [25]

    White S R 1992 Phys. Rev. Lett. 69 2863Google Scholar

    [26]

    TRG Algorithm, Hubig C, Schollwöck U http://tensornetwork. org/trg/ [2020-8-10]

    [27]

    Liao H J, Liu J G, Wang L, Xiang T 2019 Phys. Rev. X 9 031041

    [28]

    Wang H, He Y M, Chung T H, Hu H, Ying Y, Chen S, Ding X, Chen M C, Qin J, Yang X, Liu R Z, Duan Z C, Li J P, Gerhardt S, Winkler K, Jurkat J, Wang L J, Gregersen N, Huo Y H, Dai Q, Yu S, Höfling S, Lu Z Y, Pan J W 2019 Nat. Photonics 13 770Google Scholar

    [29]

    Chen S, Chen Y A, Strassel T, Yuan Z S, Zhao B, Schmiedmayer J, Pan J W 2006 Phys. Rev. Lett. 97 173004Google Scholar

    [30]

    Dudin Y O, Kuzmich A 2012 Science 336 887Google Scholar

    [31]

    Liu J, Zhou Y, Wang W, Liu R, He K, Li F, Xu Z 2013 Opt. Express 21 19209Google Scholar

    [32]

    Barbieri M, Roccia E, Mancino L, Sbroscia M, Gianani I, Sciarrino F 2017 Sci. Rep. 7 7247Google Scholar

    [33]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photonics 3 706Google Scholar

    [34]

    Hua Y L, Zhou Z Q, Li C F, Guo G C 2018 Chin. Phys. B 27 020303Google Scholar

    [35]

    窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏 2019 物理学报 68 030307Google Scholar

    Dou J P, Li H, Pang X L, Zhang C N, Yang T H, Jin X M 2019 Acta Phys. Sin. 68 030307Google Scholar

    [36]

    Gisin N, Thew R 2007 Nat. Photonics 1 165Google Scholar

    [37]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photonics 4 376Google Scholar

    [38]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar

    [39]

    Bernien H, Hensen B, Pfaff W, Koolstra G, Blok M S, Robledo L, Taminian T H, Markham M, Twitchen D J, Childress L, Hanson R 2013 Nature 497 86Google Scholar

    [40]

    Wasilewski W, Jensen K, Krauter H, Renema J J, Balabas M V, Polzik E S 2010 Phys. Rev. Lett. 104 133601Google Scholar

    [41]

    Biedermann G W, McGuinness H J, Rakholia A V, Jau Y Y, Wheeler D R, Sterk J D, Burns G R 2017 Phys. Rev. Lett. 118 163601Google Scholar

    [42]

    Zhang H, Jin X M, Yang J, Dai H N, Yang S J, Zhao T M, Rui J, He Y, Jiang X, Yang F, Pan G S, Yuan Z S, Deng Y J, Chen Z B, Bao X H, Chen S, Zhao B, Pan J W 2011 Nat. Photonics 5 628Google Scholar

    [43]

    Chen Y H, Lee M J, Wang I C, Du S W, Chen Y F, Chen Y C, Yu I A 2013 Phys. Rev. Lett. 110 083601Google Scholar

    [44]

    Fleischhauer M, Lukin M D 2002 Phys. Rev. A 65 022314Google Scholar

    [45]

    Fleischhauer M, Imamogu A, Marrangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [46]

    Mirgorodskiy I, Christaller F, Braun C, Paris-Mandoki A, Tresp C, Hofferberth S 2017 Phys. Rev. A 96 011402Google Scholar

    [47]

    Distante E, Padrón-Brito A, Cristiani M, Paredes-Barato D, Riedmatten H 2016 Phys. Rev. Lett. 117 113001Google Scholar

    [48]

    Betzig E, Chichester R J 1993 Science 262 1422Google Scholar

    [49]

    Pan S H, Hudson E W, Lang K M, Eisaki H, Uchida S, Davis J C 2000 Nature 403 746Google Scholar

    [50]

    Häffner H, Hänsel W, Roos C F, Benhelm J, Chen-al-kar D, Chwalla M, Körber T, Rapol U D, Riebe M, Schmidt P O, Becher C, Gühne O, Dür W, Blatt R 2005 Nature 438 643Google Scholar

    [51]

    Nelson K D, Li X, Weiss D S 2007 Nat. Phys. 3 556Google Scholar

    [52]

    Bakr W S, Gillen J I, Peng A, Fölling S, Greiner M 2009 Nature 462 74Google Scholar

    [53]

    Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S 2010 Nature 467 68Google Scholar

    [54]

    Brahms N, Purdy T P, Brooks D W C, Botter T, Stamper-Kurn D M 2011 Nat. Phys. 7 604Google Scholar

    [55]

    Gericke T, Würtz P, Reitz D, Langen T, Ott H 2008 Nat. Phys. 4 949Google Scholar

    [56]

    Zipkes C, Palzer S, Sias C, Köhl M 2010 Nature 464 388Google Scholar

    [57]

    Verstraete F, Wolf M M, Ciac J I 2009 Nat. Phys. 5 633Google Scholar

    [58]

    Barreiro J T, Müller M, Schindler P, Nigg D, Monz T, Chwalla M, Hennrich M, Roos C F, Zoller P, Blatt R 2011 Nature 470 486Google Scholar

    [59]

    Lim K, Suh C, Rhee J K K 2019 Quantum Inf. Process 18 73Google Scholar

    [60]

    Tresp C, Zimmer C, Mirgorodskiy I, Gorniaczyk H, Paris-Mandoki A, Hofferberth S 2016 Phys. Rev. Lett. 117 223001Google Scholar

    [61]

    Honer J, Löw R, Weimer H, Pfau T, Büchler H P 2011 Phys. Rev. Lett. 107 093601Google Scholar

    [62]

    Trenkwalder A, Spagnolli G, Semeghini G, Coop S, Landini M, Castilho P, Pezzè L, Modugno G, Inguscio M, Smerzi A, Fattori M 2016 Nat. Phys. 12 826Google Scholar

    [63]

    Labuhn H, Barredo D, Ravets S, Léséleuc S, Macri T, Lahaye T, Browaeys A 2016 Nature 534 667Google Scholar

    [64]

    Helmrich S, Arias A, Lochead G, Wintermatel T M, Bochhold M, Diehl S, Whitlock S 2020 Nature 577 481Google Scholar

    [65]

    Bloch I, Dalibard J, Nascimbène S 2012 Nat. Phys. 8 267Google Scholar

    [66]

    Yan B, Moses S A, Gadway B, Covey J P, Hazzard K R A, Rey A M, Jin D S, Ye J 2013 Nature 501 521Google Scholar

    [67]

    Blatt R, Roos C F 2012 Nat. Phys. 8 277Google Scholar

    [68]

    Lucas A 2014 Front. Phys. 2 5

    [69]

    O’Shea D, Junge C, Volz J, Rauschenbeutel A 2013 Phys. Rev. Lett. 111 193601Google Scholar

    [70]

    Bajcsy M, Hofferberth S, Balic V, Peyronel T, Hafezi M, Zibrov A S, Vuletic V, Lukin M D 2009 Phys. Rev. Lett. 102 203902Google Scholar

    [71]

    Chen W, Beck K M, Gullans M, Lukin M D, Tanji-Suzuki H, Vuletic V 2013 Science 341 768Google Scholar

    [72]

    Volz T, Reinhard A, Winger M, Badolato A, Hennessy K J, Hu E L, Imamoglu A 2012 Nat. Photonics 6 76Google Scholar

    [73]

    Garcia-Escartin J C, Chamorro-Posada P 2012 Phys. Rev. A 85 032309Google Scholar

    [74]

    Baur S, Tiarks D, Rempe G, Dürr S 2014 Phys. Rev. Lett. 112 073901Google Scholar

    [75]

    Li W, Lesanovsky I 2015 Phys. Rev. A 92 043828

    [76]

    Yu Y C, Dong M X, Ye Y H, Guo G C, Ding D S, Shi B S 2020 Sci. China Phys. Mech. Astron. 63 110312

    [77]

    Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807Google Scholar

    [78]

    Tiarks D, Baur S, Schneider K, Dürr S, Rempe G 2014 Phys. Rev. Lett. 113 053602Google Scholar

    [79]

    Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S 2014 Phys. Rev. Lett. 113 053601Google Scholar

    [80]

    Gorniaczyk H, Tresp C, Bienias P, Paris-Mandoki A, Li W, Mirgorodskiy I, Büchler H P, Lesanovsky I, Hofferberth S 2016 Nat. Commun. 7 12480Google Scholar

    [81]

    Hao Y M, Lin G W, Lin X M, Niu Y P, Gong S Q 2019 Sci. Rep. 9 4723

    [82]

    Norcia M A, Young A W, Kaufman A M 2018 Phys. Rev. X 8 041054

    [83]

    Saskin S, Wilson J T, Grinkenmeyer B, Tomson J D 2019 Phys. Rev. Lett. 122 143002Google Scholar

    [84]

    Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Löw R, Pfau T 2009 Nature 458 1005Google Scholar

    [85]

    Tallant J, Rittenhouse S T, Booth D, Sadeghpour H R, Shaffer J P 2012 Phys. Rev. Lett. 109 173202Google Scholar

    [86]

    Desalvo B J, Aman J A, Dunning F B, Killian T C, Sadeghpour H R, Yoshida S, Burgdörfer J 2015 Phys. Rev. A 92 031403Google Scholar

    [87]

    Dauphin A, Müller M, Martin-Delgado M A 2012 Phys. Rev. A 86 053618Google Scholar

    [88]

    Li X, Sarma S D 2015 Nat. Commun. 6 7137Google Scholar

    [89]

    Gorshkov A V, Nath R, Pohl T 2013 Phys. Rev. Lett. 110 153601Google Scholar

    [90]

    Otterbach J, Moos M, Muth D, Fleischhauer M 2013 Phys. Rev. Lett. 111 113001Google Scholar

    [91]

    Glaetzle A W, van Bijnen R M W, Zoller P, Lechner W A 2017 Nat. Commun. 8 15813Google Scholar

    [92]

    Pichler H, Wang S, Zhou L, Choi S, Lukin M D 2018 arXiv:1808.10816 [quant-ph]

    [93]

    Kokail C, Maier C, Bijnen R, Brydges T, Joshi M K, Jurcevic P, Muschik C A, Silvi P, Blatt R, Roos C F, Zoller P 2019 Nature 569 355Google Scholar

  • 图 1  激光激发两原子体系能级示意图

    Fig. 1.  Energy level of two-atoms system excited by one laser.

    图 2  存在频率失谐时的双原子系统能量示意图 (a) 当$\varDelta > 0$${\rm d}U/{\rm d}R > 0$时双原子系统的能量; (b) 不同频率失谐和势能情况下双原子系统的能量[19]

    Fig. 2.  Schematic of binary Rydberg energy with detuning: (a) The energy of a pair of atoms with $\varDelta > 0$ and ${\rm d}U/{\rm d}R > 0$; (b) the energy of a pair of atoms with different detuning and potentials[19].

    图 3  多体态的空间有序分布图[3] (a) 直接成像结果; (b) 多次叠加结果; (c) 预测结果

    Fig. 3.  Spatially ordered components of the many-body states[3]: (a) Directly imaging result; (b) accumulative result of many measurements; (c) predicted result.

    图 4  (a)一维Ising模型配分函数的张量网络表示; (b) 二维Ising模型配分函数的张量元; (c) 二维Ising模型配分函数的张量网络表示[26]

    Fig. 4.  (a) Tensor network form of the partition function for 1D Ising model; (b) tensor element for the partition function of 2D Ising model; (c) tensor network form of the partition function for 2D Ising model[26]

    图 5  二维Ising模型的比热随温度倒数的变化[27]

    Fig. 5.  Relationship between the specific heat and the reciprocal of the temperature[27].

    图 6  单光子源性质参数 (a) ${g^{\left( 2 \right)}}\left( 0 \right)$与有效主量子数n*关系[30], 内插图为重合光子计数与延时关系[30]; (b) 量子点方案中归一化的重合光子计数与延时关系[28]; (c) 量子点方案中平行和交叉极化情况下Hong-Ou-Mandel干涉归一化的重合光子计数与延时关系[28]

    Fig. 6.  Parameters of single-photon source: (a) ${g^{\left( 2 \right)}}\left( 0 \right)$ as a function of effective principle quantum number[30]. Coincidence count as a function of time decay is showed in the inset[30]; (b) normalized coincidence count as a function of time decay using quantum dots[28]; (c) normalized coincidence count of Hong-Ou-Mandel interference as a function of time decay with parallel and cross polarization respectively using quantum dots[28].

    图 7  量子存储性质随入射光子数Nin变化[47] (a) 存储效率与存储时间关系; (b) 存储效率与Rydberg态关系

    Fig. 7.  Properties of quantum storage with different number of input photons Nin[47]: (a) Storage efficiency as a function of storage time; (b) storage efficiency as a function of Rydberg states.

    图 8  基态与激发态结合能级示意图[4] (a) 写入过程; (b) 基态存储; (c) 读出过程

    Fig. 8.  Schematic of energy levels combined exciting state with ground state[4]: (a) Procedure of writing; (b) storage in the ground state; (c) procedure of read.

    图 9  成像示意图与模拟结果[6] (a) 单原子成像过程示意图; (b) 没有控制光情况下的探测光吸收图; (c) 有控制光情况下的探测光吸收图

    Fig. 9.  Scheme of imaging process and simulated results[6]: (a) Scheme of single-atom imaging process; (b) absorption of probe light without control light; (c) absorption of probe light with control light.

    图 10  (a) 不同源光子数情况下, 恢复门光子数与存储门光子数关系[7]; (b) 最佳减法效率对比[7]

    Fig. 10.  (a) Number of retrial gate photons ${\bar a_{\rm g}}$ as a function of number of stored gate photons ${a_{\rm s}}$ with different number of source photons ${a_{\rm s}}$[7]; (b) contrast of optimal efficiency of subtraction[7].

    图 11  相图[10]和自组织行为[64] (a) Rydberg原子密度相图; (b) 没有控制光时EIT相图; (c) 自组织演化; (d) 自组织定态规律

    Fig. 11.  phase diagram[10] and self-organized behaviors[64]: (a) Phase diagram of density of Rydberg atom; (b) EIT phase diagram without control light; (c) evolution in the self-organized process; (d) regulation of self-organized stationary states.

    图 12  二维量子模拟[63] (a) 不同原子数的集体拉比振荡; (b) 20个原子系统的Rydberg分数${f_{\rm R}}$变化; (c) 28个原子系统的Rydberg分数${f_{\rm R}}$变化

    Fig. 12.  Quantum simulation in two dimensions[63]: (a) Collective Rabi oscillation with different number of atoms; (c) Rydberg fraction of the systems with 20 atoms; (d) Rydberg fraction of the systems with 28 atoms.

    图 13  一维多原子量子模拟[9] (a) 不同相互作用强度的演化理论结果; (b) 不同相互作用强度的演化实验结果; (c) 基态概率与系统大小的关系; (d) 出现次数的状态数的统计

    Fig. 13.  Many-atom quantum simulation in one dimension[9]: (a) Predicted results of evolution with different interaction; (b) experimental results of evolution with different interaction; (c) ground-state probability as a function of system size; (d) number of states with identical number of occurrences.

    表 1  Rydberg原子的性质和主量子数的关系[11].

    Table 1.  Relation between the properties of Rydberg atom and its principal quantum number[11].

    性质与主量子数关系Na(10 d)
    束缚能n–20.14 eV
    相邻n态间的能量差n–30.023 eV
    轨道半径n2147a0
    几何截面n468000$a_0^2$
    偶极矩$\left\langle {nd\left| {er} \right|\left. {nf} \right\rangle } \right.$n2143ea0
    极化率n70.21 MHz·cm2·V–2
    辐射寿命n31.0 μs
    精细结构间隔n–3–92 MHz
    下载: 导出CSV
  • [1]

    Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5 115Google Scholar

    [2]

    Dudin Y O, Li L, Bariani F, Kuzmich A 2012 Nat. Phys. 8 790Google Scholar

    [3]

    Schauß P, Cheneau M, Endres M, Fukuhara T, Hild S, Omran A, Pohl T, Gross C, Kuhr S, Bloch I 2012 Nature 491 87Google Scholar

    [4]

    Li L, Kuzmich A 2016 Nat. Commun. 7 13618Google Scholar

    [5]

    Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2013 Phys. Rev. Lett. 110 103001Google Scholar

    [6]

    Günter G, Robert-de-Saint-Vincent M, Schempp H, Hofmann C S, Whitlock S, Weidemüller M 2012 Phys. Rev. Lett. 108 013002Google Scholar

    [7]

    Murray C R, Mirgorodskiy I, Tresp C, Braun C, Paris-Mandoki A, Gorshkov A V, Hofferberth S, Pohl T 2018 Phys. Rev. Lett. 120 113601Google Scholar

    [8]

    Keesling A, Omran A, Levine H, Bernien H, Pichler H, Choi S, Samajdar R, Schwartz S, Silvi P, Sachdev S, Zoller P, Endres M, Greiner M, Vuletić V, Lukin M D 2019 Nature 568 207Google Scholar

    [9]

    Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletić V, Lukin M D 2017 Nature 551 579Google Scholar

    [10]

    Ding D S, Busche H, Shi B S, Guo G C, Adams C S 2020 Phys. Rev. X 10 021023

    [11]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) p25

    [12]

    Christoph T 2017 Ph. D. Dissertation (Stuttgart: University of Stuttgart. Physical Institute)

    [13]

    Gallagher T F 1988 Rep. Prog. Phys. 51 143

    [14]

    Gallagher T F, Cooke W E 1979 Phys. Rev. Lett. 42 835Google Scholar

    [15]

    Cooke W E, Gallagher T F 1980 Phys. Rev. A 21 588

    [16]

    Born M, Oppenheimer J R 1927 Ann. Phys. 84 457

    [17]

    Thomas A 2008 Ph. D. Dissertation (Freiburg city: Faculty of Mathematics and Physics Albert Ludwigs University of Freiburg)

    [18]

    Browaeys A, Lahaye T 2020 Nat. Phys. 16 132Google Scholar

    [19]

    Balewski J B, Krupp A T, Gaj A, Hofferberth S, Löw R, Pfau T 2014 New J. Phys. 16 063012Google Scholar

    [20]

    Zeiher J, Schauß P, Hild S, Macrì T, Bloch I, Gross C 2015 Phys. Rev. X 5 031015

    [21]

    Tuchendler C, Lance A M, Browaeys A, Sortais Y R P, Grangier P 2018 arXiv:0805.3510 v2 [quant-ph]

    [22]

    Labeyrie G, Muller C A, Delande D, Miniatura C, Wilkowski D, Kaiser R 2003 Phys. Rev. Lett. 91 223904Google Scholar

    [23]

    Robicheaux F, Hernández J V 2005 Phys. Rev. A 72 063403Google Scholar

    [24]

    马文淦 2001 计算物理学 (合肥: 中国科学技术大学出版社) 第59页

    Ma W G 2001 Computational Physics (Hefei: Press of University of Science and Technology of China) p59

    [25]

    White S R 1992 Phys. Rev. Lett. 69 2863Google Scholar

    [26]

    TRG Algorithm, Hubig C, Schollwöck U http://tensornetwork. org/trg/ [2020-8-10]

    [27]

    Liao H J, Liu J G, Wang L, Xiang T 2019 Phys. Rev. X 9 031041

    [28]

    Wang H, He Y M, Chung T H, Hu H, Ying Y, Chen S, Ding X, Chen M C, Qin J, Yang X, Liu R Z, Duan Z C, Li J P, Gerhardt S, Winkler K, Jurkat J, Wang L J, Gregersen N, Huo Y H, Dai Q, Yu S, Höfling S, Lu Z Y, Pan J W 2019 Nat. Photonics 13 770Google Scholar

    [29]

    Chen S, Chen Y A, Strassel T, Yuan Z S, Zhao B, Schmiedmayer J, Pan J W 2006 Phys. Rev. Lett. 97 173004Google Scholar

    [30]

    Dudin Y O, Kuzmich A 2012 Science 336 887Google Scholar

    [31]

    Liu J, Zhou Y, Wang W, Liu R, He K, Li F, Xu Z 2013 Opt. Express 21 19209Google Scholar

    [32]

    Barbieri M, Roccia E, Mancino L, Sbroscia M, Gianani I, Sciarrino F 2017 Sci. Rep. 7 7247Google Scholar

    [33]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photonics 3 706Google Scholar

    [34]

    Hua Y L, Zhou Z Q, Li C F, Guo G C 2018 Chin. Phys. B 27 020303Google Scholar

    [35]

    窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏 2019 物理学报 68 030307Google Scholar

    Dou J P, Li H, Pang X L, Zhang C N, Yang T H, Jin X M 2019 Acta Phys. Sin. 68 030307Google Scholar

    [36]

    Gisin N, Thew R 2007 Nat. Photonics 1 165Google Scholar

    [37]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photonics 4 376Google Scholar

    [38]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar

    [39]

    Bernien H, Hensen B, Pfaff W, Koolstra G, Blok M S, Robledo L, Taminian T H, Markham M, Twitchen D J, Childress L, Hanson R 2013 Nature 497 86Google Scholar

    [40]

    Wasilewski W, Jensen K, Krauter H, Renema J J, Balabas M V, Polzik E S 2010 Phys. Rev. Lett. 104 133601Google Scholar

    [41]

    Biedermann G W, McGuinness H J, Rakholia A V, Jau Y Y, Wheeler D R, Sterk J D, Burns G R 2017 Phys. Rev. Lett. 118 163601Google Scholar

    [42]

    Zhang H, Jin X M, Yang J, Dai H N, Yang S J, Zhao T M, Rui J, He Y, Jiang X, Yang F, Pan G S, Yuan Z S, Deng Y J, Chen Z B, Bao X H, Chen S, Zhao B, Pan J W 2011 Nat. Photonics 5 628Google Scholar

    [43]

    Chen Y H, Lee M J, Wang I C, Du S W, Chen Y F, Chen Y C, Yu I A 2013 Phys. Rev. Lett. 110 083601Google Scholar

    [44]

    Fleischhauer M, Lukin M D 2002 Phys. Rev. A 65 022314Google Scholar

    [45]

    Fleischhauer M, Imamogu A, Marrangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [46]

    Mirgorodskiy I, Christaller F, Braun C, Paris-Mandoki A, Tresp C, Hofferberth S 2017 Phys. Rev. A 96 011402Google Scholar

    [47]

    Distante E, Padrón-Brito A, Cristiani M, Paredes-Barato D, Riedmatten H 2016 Phys. Rev. Lett. 117 113001Google Scholar

    [48]

    Betzig E, Chichester R J 1993 Science 262 1422Google Scholar

    [49]

    Pan S H, Hudson E W, Lang K M, Eisaki H, Uchida S, Davis J C 2000 Nature 403 746Google Scholar

    [50]

    Häffner H, Hänsel W, Roos C F, Benhelm J, Chen-al-kar D, Chwalla M, Körber T, Rapol U D, Riebe M, Schmidt P O, Becher C, Gühne O, Dür W, Blatt R 2005 Nature 438 643Google Scholar

    [51]

    Nelson K D, Li X, Weiss D S 2007 Nat. Phys. 3 556Google Scholar

    [52]

    Bakr W S, Gillen J I, Peng A, Fölling S, Greiner M 2009 Nature 462 74Google Scholar

    [53]

    Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S 2010 Nature 467 68Google Scholar

    [54]

    Brahms N, Purdy T P, Brooks D W C, Botter T, Stamper-Kurn D M 2011 Nat. Phys. 7 604Google Scholar

    [55]

    Gericke T, Würtz P, Reitz D, Langen T, Ott H 2008 Nat. Phys. 4 949Google Scholar

    [56]

    Zipkes C, Palzer S, Sias C, Köhl M 2010 Nature 464 388Google Scholar

    [57]

    Verstraete F, Wolf M M, Ciac J I 2009 Nat. Phys. 5 633Google Scholar

    [58]

    Barreiro J T, Müller M, Schindler P, Nigg D, Monz T, Chwalla M, Hennrich M, Roos C F, Zoller P, Blatt R 2011 Nature 470 486Google Scholar

    [59]

    Lim K, Suh C, Rhee J K K 2019 Quantum Inf. Process 18 73Google Scholar

    [60]

    Tresp C, Zimmer C, Mirgorodskiy I, Gorniaczyk H, Paris-Mandoki A, Hofferberth S 2016 Phys. Rev. Lett. 117 223001Google Scholar

    [61]

    Honer J, Löw R, Weimer H, Pfau T, Büchler H P 2011 Phys. Rev. Lett. 107 093601Google Scholar

    [62]

    Trenkwalder A, Spagnolli G, Semeghini G, Coop S, Landini M, Castilho P, Pezzè L, Modugno G, Inguscio M, Smerzi A, Fattori M 2016 Nat. Phys. 12 826Google Scholar

    [63]

    Labuhn H, Barredo D, Ravets S, Léséleuc S, Macri T, Lahaye T, Browaeys A 2016 Nature 534 667Google Scholar

    [64]

    Helmrich S, Arias A, Lochead G, Wintermatel T M, Bochhold M, Diehl S, Whitlock S 2020 Nature 577 481Google Scholar

    [65]

    Bloch I, Dalibard J, Nascimbène S 2012 Nat. Phys. 8 267Google Scholar

    [66]

    Yan B, Moses S A, Gadway B, Covey J P, Hazzard K R A, Rey A M, Jin D S, Ye J 2013 Nature 501 521Google Scholar

    [67]

    Blatt R, Roos C F 2012 Nat. Phys. 8 277Google Scholar

    [68]

    Lucas A 2014 Front. Phys. 2 5

    [69]

    O’Shea D, Junge C, Volz J, Rauschenbeutel A 2013 Phys. Rev. Lett. 111 193601Google Scholar

    [70]

    Bajcsy M, Hofferberth S, Balic V, Peyronel T, Hafezi M, Zibrov A S, Vuletic V, Lukin M D 2009 Phys. Rev. Lett. 102 203902Google Scholar

    [71]

    Chen W, Beck K M, Gullans M, Lukin M D, Tanji-Suzuki H, Vuletic V 2013 Science 341 768Google Scholar

    [72]

    Volz T, Reinhard A, Winger M, Badolato A, Hennessy K J, Hu E L, Imamoglu A 2012 Nat. Photonics 6 76Google Scholar

    [73]

    Garcia-Escartin J C, Chamorro-Posada P 2012 Phys. Rev. A 85 032309Google Scholar

    [74]

    Baur S, Tiarks D, Rempe G, Dürr S 2014 Phys. Rev. Lett. 112 073901Google Scholar

    [75]

    Li W, Lesanovsky I 2015 Phys. Rev. A 92 043828

    [76]

    Yu Y C, Dong M X, Ye Y H, Guo G C, Ding D S, Shi B S 2020 Sci. China Phys. Mech. Astron. 63 110312

    [77]

    Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807Google Scholar

    [78]

    Tiarks D, Baur S, Schneider K, Dürr S, Rempe G 2014 Phys. Rev. Lett. 113 053602Google Scholar

    [79]

    Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S 2014 Phys. Rev. Lett. 113 053601Google Scholar

    [80]

    Gorniaczyk H, Tresp C, Bienias P, Paris-Mandoki A, Li W, Mirgorodskiy I, Büchler H P, Lesanovsky I, Hofferberth S 2016 Nat. Commun. 7 12480Google Scholar

    [81]

    Hao Y M, Lin G W, Lin X M, Niu Y P, Gong S Q 2019 Sci. Rep. 9 4723

    [82]

    Norcia M A, Young A W, Kaufman A M 2018 Phys. Rev. X 8 041054

    [83]

    Saskin S, Wilson J T, Grinkenmeyer B, Tomson J D 2019 Phys. Rev. Lett. 122 143002Google Scholar

    [84]

    Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Löw R, Pfau T 2009 Nature 458 1005Google Scholar

    [85]

    Tallant J, Rittenhouse S T, Booth D, Sadeghpour H R, Shaffer J P 2012 Phys. Rev. Lett. 109 173202Google Scholar

    [86]

    Desalvo B J, Aman J A, Dunning F B, Killian T C, Sadeghpour H R, Yoshida S, Burgdörfer J 2015 Phys. Rev. A 92 031403Google Scholar

    [87]

    Dauphin A, Müller M, Martin-Delgado M A 2012 Phys. Rev. A 86 053618Google Scholar

    [88]

    Li X, Sarma S D 2015 Nat. Commun. 6 7137Google Scholar

    [89]

    Gorshkov A V, Nath R, Pohl T 2013 Phys. Rev. Lett. 110 153601Google Scholar

    [90]

    Otterbach J, Moos M, Muth D, Fleischhauer M 2013 Phys. Rev. Lett. 111 113001Google Scholar

    [91]

    Glaetzle A W, van Bijnen R M W, Zoller P, Lechner W A 2017 Nat. Commun. 8 15813Google Scholar

    [92]

    Pichler H, Wang S, Zhou L, Choi S, Lukin M D 2018 arXiv:1808.10816 [quant-ph]

    [93]

    Kokail C, Maier C, Bijnen R, Brydges T, Joshi M K, Jurcevic P, Muschik C A, Silvi P, Blatt R, Roos C F, Zoller P 2019 Nature 569 355Google Scholar

  • [1] 丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清. 基于里德堡原子电场量子测量方法及激光偏振影响分析. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241362
    [2] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量. 物理学报, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [3] 廖秋雨, 胡恒洁, 陈懋薇, 石逸, 赵元, 花春波, 徐四六, 傅其栋, 叶芳伟, 周勤. 光晶格作用下里德伯冷原子系统中的二维空间光孤子. 物理学报, 2023, 72(10): 104202. doi: 10.7498/aps.72.20230096
    [4] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [5] 李艳. 粒子间长程相互作用以及晶格中孤立缺陷点对两硬核玻色子在一维晶格势阱中量子行走的影响. 物理学报, 2023, 72(17): 170501. doi: 10.7498/aps.72.20230642
    [6] 裴思辉, 宋子旋, 林星, 方伟. 开放式法布里-珀罗光学微腔中光与单量子系统的相互作用. 物理学报, 2022, 71(6): 060201. doi: 10.7498/aps.71.20211970
    [7] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊. 基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现. 物理学报, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [8] 李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂. 49S里德堡态的射频双光子光谱. 物理学报, 2015, 64(16): 163201. doi: 10.7498/aps.64.163201
    [9] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量. 物理学报, 2015, 64(16): 160702. doi: 10.7498/aps.64.160702
    [10] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响. 物理学报, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [11] 韩小萱, 赵建明, 李昌勇, 贾锁堂. 长程铯里德堡分子的势能曲线. 物理学报, 2015, 64(13): 133202. doi: 10.7498/aps.64.133202
    [12] 赵健东, 辛洁. 高激发态原子间的范德瓦尔斯相互作用. 物理学报, 2014, 63(13): 133201. doi: 10.7498/aps.63.133201
    [13] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算. 物理学报, 2012, 61(16): 163202. doi: 10.7498/aps.61.163202
    [14] 张旺, 徐法强, 王国栋, 张文华, 李宗木, 王立武, 陈铁锌. Fe/ZnO (0001)体系界面相互作用中薄膜厚度效应的光电子能谱研究. 物理学报, 2011, 60(1): 017104. doi: 10.7498/aps.60.017104
    [15] 李嘉亮, 类淑国. 具有长程相互作用S-1/2 XY链的研究. 物理学报, 2008, 57(9): 5944-5950. doi: 10.7498/aps.57.5944
    [16] 颜利芬, 王红成, 佘卫龙. 扩散效应对光伏孤子相互作用的影响. 物理学报, 2006, 55(10): 5257-5262. doi: 10.7498/aps.55.5257
    [17] 马瑾怡, 邱锡钧. 强光场中电子系统与多光子的相互作用. 物理学报, 2001, 50(3): 416-421. doi: 10.7498/aps.50.416
    [18] 张森, 邱济真, 王刚. 静电场中Ca原子里德堡态的能级结构. 物理学报, 1989, 38(3): 481-486. doi: 10.7498/aps.38.481
    [19] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率. 物理学报, 1989, 38(10): 1717-1722. doi: 10.7498/aps.38.1717
    [20] 张森, 邱济真, 胡素芬, 陆杰, 钟建伟, 梁宜, 孙家祯. Sr原子里德堡态的电场效应. 物理学报, 1988, 37(6): 983-988. doi: 10.7498/aps.37.983
计量
  • 文章访问数:  17263
  • PDF下载量:  886
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-02
  • 修回日期:  2020-06-07
  • 上网日期:  2020-06-19
  • 刊出日期:  2020-09-20

/

返回文章
返回