搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多孔金膜的太赫兹导模共振生化传感特性仿真

杨泽浩 刘紫威 杨博 张成龙 蔡宸 祁志美

引用本文:
Citation:

基于多孔金膜的太赫兹导模共振生化传感特性仿真

杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美

Performance simulation of terahertz waveguide resonance biochemical sensor based on nanoporous gold films

Yang Ze-Hao, Liu Zi-Wei, Yang Bo, Zhang Cheng-Long, Cai Chen, Qi Zhi-Mei
PDF
HTML
导出引用
  • 仿真设计了一种高灵敏度太赫兹(THz)导模共振生化传感结构. 该结构由硅棱镜、介质薄膜和多孔金膜组成, 多孔金膜同时作为THz导波层和生化分子富集层, 能够增强THz导模与生化分子间的相互作用, 从而提高探测灵敏度. 当采用棱镜全反射方法激励THz横电(TE)或横磁(TM)导模后, 多孔金膜的吸收使得THz反射频谱出现尖锐的共振吸收峰, 由此可确定THz导模的共振频率及其对液体折射率和生化分子吸附量的灵敏度. 调节介质层的厚度和折射率可进一步提高上述THz传感结构的灵敏度和品质因数. 在45°入射角下的仿真结果指出, TE和TM导模的共振频率随着液体折射率或生化分子吸附量的增大而线性变化, TM导模的折射率灵敏度可高达13.42 THz/RIU, 品质因数达到167.70/RIU, TE导模对液体折射率的灵敏度小于TM导模, 但对分子吸附量的灵敏度大于TM导模, 究其原因是TE导模透出多孔金膜的消逝场比TM导模弱.
    A highly sensitive terahertz (THz) waveguide resonance biochemical sensor is designed and simulated. The sensor consists of a silicon prism, a dielectric layer and a nanoporous gold film. The nanoporous gold film acts as both a THz waveguiding layer and a biochemical molecular enrichment layer, which can enhance the interaction between the THz waveguide mode and the adsorbed biochemical molecules, consequently improving the sensor’s sensitivity. When the THz transverse electric (TE) or transverse magnetic (TM) modes are excited by the prism-coupling method, the THz absorption of the nanoporous gold film results in the sharp resonance dips in the THz reflection spectrum. The resonance frequencies of the THz waveguide modes and the sensitivity to either liquid refractive index (RI) or adsorbed molecules can be determined with the measured reflection spectra, and the sensor’s sensitivity and its figure of merit (FOM) can be improved by adjusting the thickness and RI of the dielectric layer. The simulation results at 45º incidence angle indicate that the resonance frequencies of the TE and TM modes of the sensor linearly change with increasing either liquid RI or the amount of adsorbed molecules, and the RI sensitivity and the FOM with the TM mode are 13.42 THz/RIU and 167.70/RIU, respectively. Compared with the TM mode, the TE mode has a lower sensitivity to lqiuid RI but a high sensitivity to adsorbed molecules. The reason for these differences is that with the TE mode the evanescent field penentrating out of the nanopous gold film is weaker than that with the TM mode.
      通信作者: 祁志美, zhimei-qi@mail.ie.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFB3200100)和国家自然科学基金(批准号: 62121003, 61931018, 61871365)资助的课题.
      Corresponding author: Qi Zhi-Mei, zhimei-qi@mail.ie.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFB3200100) and the National Natural Science Foundation of China (Grant Nos. 62121003, 61931018, 61871365).
    [1]

    Walther M, Plochocka P, Fischer B, Helm H, Jepsen P U 2002 Biopolymers 67 310Google Scholar

    [2]

    He M, Azad A K, Ye S, Zhang W 2006 Opt. Commun. 259 389Google Scholar

    [3]

    Siegel P H 2004 IEEE Trans. Microwave Theory Tech. 52 2438Google Scholar

    [4]

    Jepsen P U, Cooke D G, Koch M 2011 Laser Photonics Rev. 5 124Google Scholar

    [5]

    Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 pS266Google Scholar

    [6]

    Zhang L, Fu Q Y, Tan Y Y, Li X M, Deng Y H, Zhou Z K, Zhou B, Xia H Q, Chen H J, Qiu C W, Zhou J H 2021 Nano Lett. 21 2681Google Scholar

    [7]

    Zhao Q, Zhou W J, Deng Y H, Zheng Y Q, Shi Z H, Ang L K, Zhou Z K, Wu L 2022 J. Phys. D: Appl. Phys. 55 203002Google Scholar

    [8]

    Otto A 1968 Z. Phys. A: Hadrons Nucl. 216 398Google Scholar

    [9]

    Kretschm E, Raether H 1968 Z. Naturforsch. Part A-Astrophysik Physik Und Physikalische Chemie A23 2135Google Scholar

    [10]

    Maier S A, Atwater H A 2005 J. Appl. Phys. 98 011101Google Scholar

    [11]

    Chochol J, Postava K, Cada M, Pistora J 2017 Sci. Rep. 7 13117Google Scholar

    [12]

    Sugimoto H, Tabata H 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Electr Network, November 8–13, 2020 p1

    [13]

    Gan C H 2012 Appl. Phys. Lett. 101 111609Google Scholar

    [14]

    Chen X, Lindley-Hatcher H, Stantchev R I, Wang J, Li K, Serrano A H, Taylor Z D, Castro-Camus E, Pickwell-MacPherson E 2022 Chem. Phys. Rev. 3 011311Google Scholar

    [15]

    Garcia-Vidal F J, Martin-Moreno L, Pendry J B 2005 J. Opt. A:Pure Appl. Opt. 7 S97Google Scholar

    [16]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [17]

    Miyamaru F, Hayashi S, Otani C, Kawase K, Ogawa Y, Yoshida H, Kato E 2006 Opt. Lett. 31 1118Google Scholar

    [18]

    Yoshida H, Ogawa Y, Kawai Y, Hayashi S, Hayashi A, Otani C, Kato E, Miyamaru F, Kawase K 2007 Appl. Phys. Lett. 91 253901Google Scholar

    [19]

    Xie L J, Gao W L, Shu J, Ying Y B, Kono J C 2015 Sci. Rep. 5 8671Google Scholar

    [20]

    Hasebe T, Yamada Y, Tabata H 2011 Biochem. Biophys. Res. Commun. 414 192Google Scholar

    [21]

    Hasebe T, Kawabe S, Matsui H, Tabata H 2012 J. Appl. Phys. 112 094702Google Scholar

    [22]

    Tian Z, Han J G, Lu X C, Gu J Q, Xing Q R, Zhang W L 2009 Chem. Phys. Lett. 475 132Google Scholar

    [23]

    He M X, Li J Y, Liu G L, Han J G, Tian Z, Gu J Q, Chen T, Qin R 2013 Appl. Opt. 52 824Google Scholar

    [24]

    Liu G L, He M X, Tian Z, Li J Y, Liu J Z 2013 Appl Opt. 52 5695Google Scholar

    [25]

    Peter H, Siegel 2002 IEEE Trans. Microwave Theory Tech. 50 910Google Scholar

    [26]

    Ng B H, Hanham S M, Wu J F, Fernandez-Dominguez A I, Klein N, Liew Y F, Breese M B H, Hong M H, Maier S A 2014 ACS Photonics 1 1059Google Scholar

    [27]

    Huang Y, Zhong S, Shi T, Shen Y C, Cui D 2020 Nanophotonics 9 3011Google Scholar

    [28]

    O'Hara J F, Withayachumnankul W, Al-Naib I 2012 J. Infrared Millimeter Terahertz Waves 33 245Google Scholar

    [29]

    Saxler J, Rivas J G, Janke C, Pellemans H P M, Bolivar P H, Kurz H 2004 Phys. Rev. B 69 155427Google Scholar

    [30]

    Gong M, Jeon T I, Grischkowsky D 2009 Opt. Express 17 17088Google Scholar

    [31]

    Zhang Z, Lu D F, Qi Z M 2013 Acta Phys. Chim. Sin. 29 867Google Scholar

    [32]

    Qi Z M, Honma I, Zhou H 2006 Anal. Chem. 78 1034Google Scholar

    [33]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W, Ward C A 1983 Appl. Opt. 22 1099Google Scholar

    [34]

    Xu Y W, Wu Z X, Zhang L J, Lu H J, Yang P Y, Webley P A, Zhao D Y 2009 Anal. Chem. 81 503Google Scholar

    [35]

    Chen Q, Min L, Hammershoj P, Zhou D, Han Y, Bo W L, Yan C G, Han B H 2012 J. Am. Chem. Soc. 134 6084Google Scholar

    [36]

    Liu P K, Huang T J 2020 J. Infrared Millimeter Waves 39 169

    [37]

    Ng B H, Wu J F, Hanham S M, Fernandez-Dominguez A I, Klein N, Liew Y F, Breese M B H, Hong M H, Maier S A 2013 Adv. Opt. Mater. 1 543Google Scholar

    [38]

    岳伟伟, 王卫宁, 赵国忠, 张存林, 闫海涛 2005 物理学报 54 3094Google Scholar

    Yue W W, Wang W N, Zhao G Z, Zhang C L, Yan H T 2005 Acta Phys. Sin. 54 3094Google Scholar

    [39]

    Yao H Z, Zhong S C 2014 Opt. Express 22 25149Google Scholar

  • 图 1  THz导模共振生化传感结构示意图

    Fig. 1.  Schematic diagram of the THz waveguide resonance biochemical sensing structure.

    图 2  (a) 不同孔隙率情况下, 多孔金介电常数εNPG实部随频率的变化; (b) 不同孔隙率情况下, 多孔金介电常数εNPG虚部随频率的变化; (c) 孔隙率为0.7和0.8时, 多孔金介电常数εNPG实部随频率的变化; (d) 孔隙率为0.7和0.8时, 多孔金介电常数εNPG虚部随频率的变化

    Fig. 2.  (a) Variation of real part of εNPG as a function of frequency for different porosity; (b) variation of imaginary part of εNPG as a function of frequency for different porosity; (c) variation of real part of εNPG as a function of frequency for different porosity p = 0.7 and 0.8; (d) variation of imaginary part of εNPG as a function of frequency for different porosity p = 0.7 and 0.8.

    图 3  TM模式下, (a) 在介质层折射率${n_{\text{d}}} = 1$, 厚度$h = 13{\text{ μm}}$, 多孔金孔隙率为0.7且厚度${d_{\text{m}}} = 10{\text{ μm}}$时, 频率-反射率曲线及其频率-相位曲线; (b) 在介质层折射率${n_{\text{d}}} = 1$, 厚度$h = 13{\text{ μm}}$, 多孔金孔隙率为0.7且厚度${d_{\text{m}}} = 10{\text{ μm}}$时, 该结构在频率为1.996 THz情况下的电场强度二维分布

    Fig. 3.  In TM mode: (a) Frequency-reflectivity curve and frequency-phase curve for a dielectric layer with refractive index ${n_{\text{d}}} = 1$, thickness h = 13 μm, nanoporous gold film with porosity of 0.7 and thickness dm = 10 μm; (b) two-dimensional distribution of the electric field strength of this structure, at 1.996 THz, for a dielectric layer with refractive index ${n_{\rm d}} = 1$, thickness h = 13 μm, nanoporous gold film with porosity of 0.7 and thickness dm = 10 μm.

    图 4  TM模式下, 在介质层为空气(${n_{\text{d}}} = 1$)时, (a) 不同介质层厚度h条件下的频率-反射率曲线; (b) 不同介质层厚度h条件下折射率灵敏度和FOM的变化; (c) 三张图(自左向右)分别是介质层厚度为9, 13和17 μm情况下的能量密度时间均值(单位J/m³); (d) 当介质层折射率${n_{\text{d}}} = 1$, 厚度$h = 13{\text{ μm}}$时, ${r_{12}}$${r_{{\text{THz}}}}$的振幅及其相位随频率的变化

    Fig. 4.  In TM mode, for a dielectric layer with refractive index ${n_{\text{d}}} = 1$, (a) frequency-reflectivity curves for different dielectric layer thicknesses h. (b) Variation of refractive index sensitivity and FOM for different dielectric layer thicknesses h. (c) The three pictures (from left to right) show the time-average energy density distribution at h = 9, 13, 17 μm, respectively. (d) The variation of the amplitudes and phases of ${r_{12}}$ and ${r_{{\text{THz}}}}$ with frequency for a dielectric layer with refractive index ${n_{\text{d}}} = 1$, thickness h = 13 μm

    图 5  TM模式下, (a) 在介质层厚度$h = 13{\text{ μm}}$条件下, 介质层折射率${n_{\text{d}}}$不同时的频率-反射率曲线; (b) 在不同介质层折射率$ {n}_{\mathrm{d}} $和相应的最佳介质层厚度情况下的频率-反射率曲线; (c) 在介质层厚度$h = 13{\text{ μm}}$, 不同介质层折射率${n_{\text{d}}}$条件下, 折射率灵敏度和FOM的变化及各自最佳介质层厚度情况下的FOM

    Fig. 5.  In TM mode, (a) simulated reflectivity spectra for the same dielectric layer thicknesses h = 13 μm and different dielectric layer refractive indices ${n_{\text{d}}}$; (b) simulated reflectivity spectra for the respective optimum dielectric layer thicknesses ${h_{{\text{opt}}}}$ in different dielectric layer refractive indices ${n_{\text{d}}}$; (c) in the case of dielectric layers with different refractive indices ${n_{\text{d}}}$, variations in refractive index sensitivity and FOM for the same thickness $h = 13{\text{ μm}}$ and for the respective optimum dielectric layer thickness ${h_{{\text{opt}}}}$, respectively.

    图 6  待测物为不同折射率溶液时, (a) TM模式下, 频率-反射率曲线; (b) TE模式下, 频率-反射率曲线; (c)在TM和TE模式下, 折射率-共振频率的线性拟合曲线

    Fig. 6.  (a) Reflectivity spectra for different refractive indexes of solutions in TM mode; (b) reflectivity spectra for different refractive indexes of solutions in TE mode; (c) refractive indexes of solutions-resonance frequency linear fitting curve for different refractive indexes of solutions in TM and TE mode.

    图 7  TM模式下, 不同待测物对应的导模共振结构灵敏度及介质层最佳厚度

    Fig. 7.  Sensitivity and optimum thicknesses of dielectric layers of the waveguide resonance structure for different analyses in TM mode.

    图 8  (a) TM模式下, 在不同体积分数$\left( {{f_{\text{c}}}} \right)$酪氨酸情况下的频率-反射率曲线; (b) TE模式下, 在不同体积分数$ \left( {{f_{\text{c}}}} \right) $酪氨酸情况下的频率-反射率曲线; (c) TM和TE情况下, 在不同体积分数$\left( {{f_{\text{c}}}} \right)$酪氨酸情况下, 体积分数$\left( {{f_{\text{c}}}} \right)$与共振频率$\left( {{f_{\text{r}}}} \right)$的线性拟合图

    Fig. 8.  (a) Simulated reflectivity spectra for tyrosine in TM mode at different volume fractions $\left( {{f_{\text{c}}}} \right)$; (b) simulated reflectivity spectra for tyrosine in TE mode at different volume fractions $\left( {{f_{\text{c}}}} \right)$; (c) volume fraction-resonance frequency linear fitting curve for tyrosine in TM and TE mode at different volume fractions $\left( {{f_{\text{c}}}} \right)$.

    表 1  各类基于金膜的太赫兹传感结构尺寸和性能参数比较

    Table 1.  Au-based terahertz sensing structure dimensions and performance parameters.

    结构名称纵向尺寸
    (介质层+金膜)/μm
    最高灵敏度/(THz·RIU–1)
    多孔金太赫兹导模
    共振生化传感结构
    ~20—40$13.42{\text{ }}$
    基模SSPP传感结构[37]~100—200$0.47$
    高阶模SSPP
    传感结构[39]
    ~250—1000$2.27{\text{ }}$
    相位跳变型SSPP
    传感结构[27]
    ~55—150$0.411$
    下载: 导出CSV
  • [1]

    Walther M, Plochocka P, Fischer B, Helm H, Jepsen P U 2002 Biopolymers 67 310Google Scholar

    [2]

    He M, Azad A K, Ye S, Zhang W 2006 Opt. Commun. 259 389Google Scholar

    [3]

    Siegel P H 2004 IEEE Trans. Microwave Theory Tech. 52 2438Google Scholar

    [4]

    Jepsen P U, Cooke D G, Koch M 2011 Laser Photonics Rev. 5 124Google Scholar

    [5]

    Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 pS266Google Scholar

    [6]

    Zhang L, Fu Q Y, Tan Y Y, Li X M, Deng Y H, Zhou Z K, Zhou B, Xia H Q, Chen H J, Qiu C W, Zhou J H 2021 Nano Lett. 21 2681Google Scholar

    [7]

    Zhao Q, Zhou W J, Deng Y H, Zheng Y Q, Shi Z H, Ang L K, Zhou Z K, Wu L 2022 J. Phys. D: Appl. Phys. 55 203002Google Scholar

    [8]

    Otto A 1968 Z. Phys. A: Hadrons Nucl. 216 398Google Scholar

    [9]

    Kretschm E, Raether H 1968 Z. Naturforsch. Part A-Astrophysik Physik Und Physikalische Chemie A23 2135Google Scholar

    [10]

    Maier S A, Atwater H A 2005 J. Appl. Phys. 98 011101Google Scholar

    [11]

    Chochol J, Postava K, Cada M, Pistora J 2017 Sci. Rep. 7 13117Google Scholar

    [12]

    Sugimoto H, Tabata H 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Electr Network, November 8–13, 2020 p1

    [13]

    Gan C H 2012 Appl. Phys. Lett. 101 111609Google Scholar

    [14]

    Chen X, Lindley-Hatcher H, Stantchev R I, Wang J, Li K, Serrano A H, Taylor Z D, Castro-Camus E, Pickwell-MacPherson E 2022 Chem. Phys. Rev. 3 011311Google Scholar

    [15]

    Garcia-Vidal F J, Martin-Moreno L, Pendry J B 2005 J. Opt. A:Pure Appl. Opt. 7 S97Google Scholar

    [16]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [17]

    Miyamaru F, Hayashi S, Otani C, Kawase K, Ogawa Y, Yoshida H, Kato E 2006 Opt. Lett. 31 1118Google Scholar

    [18]

    Yoshida H, Ogawa Y, Kawai Y, Hayashi S, Hayashi A, Otani C, Kato E, Miyamaru F, Kawase K 2007 Appl. Phys. Lett. 91 253901Google Scholar

    [19]

    Xie L J, Gao W L, Shu J, Ying Y B, Kono J C 2015 Sci. Rep. 5 8671Google Scholar

    [20]

    Hasebe T, Yamada Y, Tabata H 2011 Biochem. Biophys. Res. Commun. 414 192Google Scholar

    [21]

    Hasebe T, Kawabe S, Matsui H, Tabata H 2012 J. Appl. Phys. 112 094702Google Scholar

    [22]

    Tian Z, Han J G, Lu X C, Gu J Q, Xing Q R, Zhang W L 2009 Chem. Phys. Lett. 475 132Google Scholar

    [23]

    He M X, Li J Y, Liu G L, Han J G, Tian Z, Gu J Q, Chen T, Qin R 2013 Appl. Opt. 52 824Google Scholar

    [24]

    Liu G L, He M X, Tian Z, Li J Y, Liu J Z 2013 Appl Opt. 52 5695Google Scholar

    [25]

    Peter H, Siegel 2002 IEEE Trans. Microwave Theory Tech. 50 910Google Scholar

    [26]

    Ng B H, Hanham S M, Wu J F, Fernandez-Dominguez A I, Klein N, Liew Y F, Breese M B H, Hong M H, Maier S A 2014 ACS Photonics 1 1059Google Scholar

    [27]

    Huang Y, Zhong S, Shi T, Shen Y C, Cui D 2020 Nanophotonics 9 3011Google Scholar

    [28]

    O'Hara J F, Withayachumnankul W, Al-Naib I 2012 J. Infrared Millimeter Terahertz Waves 33 245Google Scholar

    [29]

    Saxler J, Rivas J G, Janke C, Pellemans H P M, Bolivar P H, Kurz H 2004 Phys. Rev. B 69 155427Google Scholar

    [30]

    Gong M, Jeon T I, Grischkowsky D 2009 Opt. Express 17 17088Google Scholar

    [31]

    Zhang Z, Lu D F, Qi Z M 2013 Acta Phys. Chim. Sin. 29 867Google Scholar

    [32]

    Qi Z M, Honma I, Zhou H 2006 Anal. Chem. 78 1034Google Scholar

    [33]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W, Ward C A 1983 Appl. Opt. 22 1099Google Scholar

    [34]

    Xu Y W, Wu Z X, Zhang L J, Lu H J, Yang P Y, Webley P A, Zhao D Y 2009 Anal. Chem. 81 503Google Scholar

    [35]

    Chen Q, Min L, Hammershoj P, Zhou D, Han Y, Bo W L, Yan C G, Han B H 2012 J. Am. Chem. Soc. 134 6084Google Scholar

    [36]

    Liu P K, Huang T J 2020 J. Infrared Millimeter Waves 39 169

    [37]

    Ng B H, Wu J F, Hanham S M, Fernandez-Dominguez A I, Klein N, Liew Y F, Breese M B H, Hong M H, Maier S A 2013 Adv. Opt. Mater. 1 543Google Scholar

    [38]

    岳伟伟, 王卫宁, 赵国忠, 张存林, 闫海涛 2005 物理学报 54 3094Google Scholar

    Yue W W, Wang W N, Zhao G Z, Zhang C L, Yan H T 2005 Acta Phys. Sin. 54 3094Google Scholar

    [39]

    Yao H Z, Zhong S C 2014 Opt. Express 22 25149Google Scholar

  • [1] 卢文强, 易颖婷, 宋前举, 周自刚, 易有根, 曾庆栋, 易早. 基于狄拉克半金属纳米线的太赫兹可调七波段完美吸收器的模拟仿真. 物理学报, 2025, 74(3): 034101. doi: 10.7498/aps.74.20241516
    [2] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] 陈钇成, 张成龙, 张丽超, 祁志美. InSb光栅耦合的太赫兹表面等离激元共振传感方法. 物理学报, 2024, 73(9): 098701. doi: 10.7498/aps.73.20231904
    [4] 向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 利用样品阱实现太赫兹超材料的超微量传感. 物理学报, 2023, 72(12): 128701. doi: 10.7498/aps.72.20230080
    [5] 于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟. 基于纳米印刷技术的双螺旋太赫兹可调超表面. 物理学报, 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [6] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [7] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性. 物理学报, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [8] 王玥, 崔子健, 张晓菊, 张达篪, 张向, 周韬, 王暄. 超材料赋能先进太赫兹生物化学传感检测技术的研究进展. 物理学报, 2021, 70(24): 247802. doi: 10.7498/aps.70.20211752
    [9] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [10] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [11] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器. 物理学报, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [12] 汪静丽, 刘洋, 钟凯. 基于领结型多孔光纤的双芯太赫兹偏振分束器. 物理学报, 2017, 66(2): 024209. doi: 10.7498/aps.66.024209
    [13] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [14] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [15] 安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军. 碳纳米管/聚二甲基硅氧烷复合薄膜的制备及力敏特性研究. 物理学报, 2014, 63(23): 237306. doi: 10.7498/aps.63.237306
    [16] 李珊珊, 常胜江, 张昊, 白晋军, 刘伟伟. 基于悬浮式双芯多孔光纤的太赫兹偏振分离器. 物理学报, 2014, 63(11): 110706. doi: 10.7498/aps.63.110706
    [17] 张喆, 柳倩, 祁志美. 基于金银合金薄膜的近红外表面等离子体共振传感器研究. 物理学报, 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [18] 娄淑琴, 王鑫, 尹国路, 韩博琳. 基于侧漏型光子晶体光纤高灵敏度宽线性范围弯曲传感器的研究. 物理学报, 2013, 62(19): 194209. doi: 10.7498/aps.62.194209
    [19] 逯丹凤, 祁志美. 高灵敏度集成光偏振干涉仪特性及生化传感应用研究. 物理学报, 2012, 61(11): 114212. doi: 10.7498/aps.61.114212
    [20] 杨玉平, 冯帅, 冯辉, 潘学聪, 王义全, 王文忠. CuS纳米粒子在太赫兹波段的光电性质研究. 物理学报, 2011, 60(2): 027802. doi: 10.7498/aps.60.027802
计量
  • 文章访问数:  5077
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-17
  • 修回日期:  2022-05-28
  • 上网日期:  2022-10-20
  • 刊出日期:  2022-11-05

/

返回文章
返回