搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多孔金膜的太赫兹导模共振生化传感特性仿真

杨泽浩 刘紫威 杨博 张成龙 蔡宸 祁志美

引用本文:
Citation:

基于多孔金膜的太赫兹导模共振生化传感特性仿真

杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美

Simulation of terahertz waveguided-mode resonant biochemical sensing characteristics based on nanoporous gold films

Yang Ze-hao, Liu Zi-wei, Yang Bo, Zhang Cheng-long, Cai Chen, Qi Zhi-mei
PDF
导出引用
  • 本文仿真设计了一种高灵敏度太赫兹(THz)导模共振生化传感结构。该结构由硅棱镜、介质薄膜和多孔金膜组成,多孔金膜同时作为THz导波层和生化分子富集层,能够增强THz导模与生化分子的相互作用,从而提高探测灵敏度。当THz导模由棱镜全反射方法激励后,多孔金膜的吸收使得THz反射频谱出现尖锐的共振吸收峰,由此可确定THz导模的共振频率及其对待测物折射率和生化分子吸附的灵敏度。仿真结果指出上述THz导模共振结构对折射率在1-2.3范围内的待测物质具有高折射率灵敏度,通过优化介质膜的厚度和折射率,可显著提高该结构的耦合效率和品质因数。在多孔金膜孔内填充物为氮气情况下,折射率灵敏度可高达13.42 THZ/RIU,品质因数也高达167.70 RIU-1。此外,多孔金膜吸附小分子的特性使得该结构中的TE和TM导模均能对低浓度生化小分子进行探测,与同类传感器相比,在灵敏度与探测下限两个指标上具有明显优势,显示出良好的应用潜力。
    A highly sensitive terahertz (THz) waveguided-mode resonant biochemical sensing structure has been designed and simulated. The structure consists of a silicon prism, a dielectric film and a nanoporous gold film, which acts as both a THz waveguide layer and a biochemical molecule enrichment layer to enhance the interaction between the THz waveguide mode and the biochemical molecules, thus improving the detection sensitivity. When the THz waveguide mode is excited by the prismatic total reflection method, the absorption of the nanoporous gold film makes the THz reflection spectrum appear sharp resonance absorption peaks, which can determine the resonance frequency of the THz waveguide mode and the sensitivity to the refractive index of the analyte and the enrichment of biochemical molecules. The simulation results indicate that the above THz mode resonance structure has high refractive index sensitivity for substances to be measured in the refractive index range 1-2.3, and that the coupling efficiency and Figure of Merit (FOM) of the structure can be significantly improved by optimising the thickness and refractive index of the dielectric film. In the case of nanoporous gold membranes filled with nitrogen, the refractive index sensitivity can be as high as 13.42 THz/RIU, and the FOM as high as 167.70 RIU-1. In addition, the enrichment of small molecules by the nanoporous gold membrane allows both the TE and TM modes in this structure to detect small biochemical molecules at low concentrations, giving a significant advantage over similar sensors in terms of sensitivity and lower detection limit, showing good potential for application.
  • [1]

    Walther M, Plochocka P, Fischer B, Helm H, Jepsen P U 2002Biopolymers 67 310

    [2]

    He M, Azad A K, Ye S, Zhang W 2006Optics Communications 259 389

    [3]

    Siegel, P. H 2004Microwave Theory& Techniques IEEE Transactions on 52 2438

    [4]

    Jepsen P U, Cooke D G, Koch M 2011Laser& Photonics Reviews 5 124

    [5]

    Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005Semiconductor science and technology 20 p.S266

    [6]

    Zhang L, Fu Q Y, Tan Y Y, Li X M, Deng Y H, Zhou Z K, Zhou B, Xia H Q, Chen H J, Qiu C W, Zhou J H 2021Nano Letters 21 2681

    [7]

    Zhao Q, Zhou W J, Deng Y H, Zheng Y Q, Shi Z H, Ang L K, Zhou Z K, Wu L 2022Journal of Physics D-Applied Physics 55 203002

    [8]

    Otto A 1968Zeitschrift für Physik A Hadrons and Nuclei 216 398

    [9]

    Kretschm.E, Raether H 1968Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und Physikalische Chemie A 23 2135

    [10]

    Maier S A, Atwater H A 2005Journal of Applied Physics 98 011101

    [11]

    Chochol J, Postava K, Cada M, Pistora J 2017Sci Rep 7 13117

    [12]

    Sugimoto H, Tabata H 202045th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 8-13 Nov. 2020 p1

    [13]

    Gan C H 2012Applied Physics Letters 101 111609

    [14]

    Chen X, Lindley-Hatcher H, Stantchev R I, Wang J, Li K, Serrano A H, Taylor Z D, Castro-Camus E, Pickwell-MacPherson E 2022Chemical Physics Reviews 3 011311

    [15]

    Garcia-Vidal F J, Martin-Moreno L, Pendry J B 2005Journal of Optics a-Pure and Applied Optics 7 S97

    [16]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004Science 305 847

    [17]

    Miyamaru F, Hayashi S, Otani C, Kawase K, Ogawa Y, Yoshida H, Kato E 2006Optics Letters 31 1118

    [18]

    Yoshida H, Ogawa Y, Kawai Y, Hayashi S, Hayashi A, Otani C, Kato E, Miyamaru F, Kawase K 2007Applied Physics Letters 91 253901

    [19]

    Xie L J, Gao W L, Shu J, Ying Y B, Kono J C 2015Sci Rep 5 8671

    [20]

    Hasebe T, Yamada Y, Tabata H 2011Biochemical and Biophysical Research Communications 414 192

    [21]

    Hasebe T, Kawabe S, Matsui H, Tabata H 2012Journal of Applied Physics 112 094702

    [22]

    Tian Z, Han J G, Lu X C, Gu J Q, Xing Q R, Zhang W L 2009Chemical Physics Letters 475 132

    [23]

    He M X, Li J Y, Liu G L, Han J G, Tian Z, Gu J Q, Chen T, Qin R 2013Applied Optics 52 824

    [24]

    Liu G L, He M X, Tian Z, Li J Y, Liu J Z 2013Applied Optics 52 5695

    [25]

    Peter, H., Siegel 2002IEEE Transactions on Microwave Theory and Techniques 50 910

    [26]

    Ng B H, Hanham S M, Wu J F, Fernandez-Dominguez A I, Klein N, Liew Y F, Breese M B H, Hong M H, Maier S A 2014Acs Photonics 1 1059

    [27]

    Huang Y, Zhong S, Shi T, Shen Y-c, Cui D 2020Nanophotonics 9 3011

    [28]

    O'Hara J F, Withayachumnankul W, Al-Naib I 2012Journal of Infrared Millimeter and Terahertz Waves 33 245

    [29]

    Saxler J, Rivas J G, Janke C, Pellemans H P M, Bolivar P H, Kurz H 2004Physical Review B 69 155427

    [30]

    Gong M, Jeon T I, Grischkowsky D 2009Opt. Express 17 17088

    [31]

    Zhang Z, Lu D F, Qi Z M 2013Acta Physico-Chimica Sinica 29 867

    [32]

    Qi Z M, Honma I, Zhou H 2006Analytical Chemistry 78 1034

    [33]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W, Ward C A 1983Applied Optics 22 1099

    [34]

    Xu Y W, Wu Z X, Zhang L J, Lu H J, Yang P Y, Webley P A, Zhao D Y 2009Analytical Chemistry 81 503

    [35]

    Chen Q, Min L, Hammershoj P, Zhou D, Han Y, Bo W L, Yan C G, Han B H 2012J. Am. Chem. Soc. 134 6084

    [36]

    Liu P K, Huang T J 2020Journal of Infrared and Millimeter Waves 39 169

    [37]

    Ng B H, Wu J F, Hanham S M, Fernandez-Dominguez A I, Klein N, Liew Y F, Breese M B H, Hong M H, Maier S A 2013Advanced Optical Materials 1 543

    [38]

    Yue W W, Wang W N, Zhao G Z, Zhang C L, Yan H T 2005Acta Physica Sinica 54 3094

    [39]

    Yao H Z, Zhong S C 2014Opt. Express 22 25149

  • [1] 于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟. 基于纳米印刷技术的双螺旋太赫兹可调超表面. 物理学报, doi: 10.7498/aps.71.20212408
    [2] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, doi: 10.7498/aps.71.20212303
    [3] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性. 物理学报, doi: 10.7498/aps.70.20201054
    [4] 王玥, 崔子健, 张晓菊, 张达篪, 张向, 周韬, 王暄. 超材料赋能先进太赫兹生物化学传感检测技术的研究进展. 物理学报, doi: 10.7498/aps.70.20211752
    [5] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, doi: 10.7498/aps.70.20210062
    [6] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, doi: 10.7498/aps.70.20201828
    [7] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器. 物理学报, doi: 10.7498/aps.68.20191024
    [8] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, doi: 10.7498/aps.67.20180226
    [9] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, doi: 10.7498/aps.66.148705
    [10] 汪静丽, 刘洋, 钟凯. 基于领结型多孔光纤的双芯太赫兹偏振分束器. 物理学报, doi: 10.7498/aps.66.024209
    [11] 李克武, 王志斌, 陈友华, 杨常青, 张瑞. 基于弹光调制的高灵敏旋光测量. 物理学报, doi: 10.7498/aps.64.184206
    [12] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, doi: 10.7498/aps.64.117801
    [13] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, doi: 10.7498/aps.64.228501
    [14] 安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军. 碳纳米管/聚二甲基硅氧烷复合薄膜的制备及力敏特性研究. 物理学报, doi: 10.7498/aps.63.237306
    [15] 李珊珊, 常胜江, 张昊, 白晋军, 刘伟伟. 基于悬浮式双芯多孔光纤的太赫兹偏振分离器. 物理学报, doi: 10.7498/aps.63.110706
    [16] 张喆, 柳倩, 祁志美. 基于金银合金薄膜的近红外表面等离子体共振传感器研究. 物理学报, doi: 10.7498/aps.62.060703
    [17] 娄淑琴, 王鑫, 尹国路, 韩博琳. 基于侧漏型光子晶体光纤高灵敏度宽线性范围弯曲传感器的研究. 物理学报, doi: 10.7498/aps.62.194209
    [18] 逯丹凤, 祁志美. 高灵敏度集成光偏振干涉仪特性及生化传感应用研究. 物理学报, doi: 10.7498/aps.61.114212
    [19] 王玥, 贺训军, 吴昱明, 吴群, 梅金硕, 李龙威, 杨福杏, 赵拓, 李乐伟. 碳纳米管薄膜周期结构的太赫兹表面等离子波特性研究. 物理学报, doi: 10.7498/aps.60.107301
    [20] 杨玉平, 冯帅, 冯辉, 潘学聪, 王义全, 王文忠. CuS纳米粒子在太赫兹波段的光电性质研究. 物理学报, doi: 10.7498/aps.60.027802
计量
  • 文章访问数:  161
  • PDF下载量:  6
  • 被引次数: 0
出版历程

基于多孔金膜的太赫兹导模共振生化传感特性仿真

  • 1. 中国科学院空天信息创新研究院传感技术国家重点实验室, 北京 100190;
  • 2. 中国科学院大学, 北京 100049

摘要: 本文仿真设计了一种高灵敏度太赫兹(THz)导模共振生化传感结构。该结构由硅棱镜、介质薄膜和多孔金膜组成,多孔金膜同时作为THz导波层和生化分子富集层,能够增强THz导模与生化分子的相互作用,从而提高探测灵敏度。当THz导模由棱镜全反射方法激励后,多孔金膜的吸收使得THz反射频谱出现尖锐的共振吸收峰,由此可确定THz导模的共振频率及其对待测物折射率和生化分子吸附的灵敏度。仿真结果指出上述THz导模共振结构对折射率在1-2.3范围内的待测物质具有高折射率灵敏度,通过优化介质膜的厚度和折射率,可显著提高该结构的耦合效率和品质因数。在多孔金膜孔内填充物为氮气情况下,折射率灵敏度可高达13.42 THZ/RIU,品质因数也高达167.70 RIU-1。此外,多孔金膜吸附小分子的特性使得该结构中的TE和TM导模均能对低浓度生化小分子进行探测,与同类传感器相比,在灵敏度与探测下限两个指标上具有明显优势,显示出良好的应用潜力。

English Abstract

目录

    /

    返回文章
    返回