搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维声学黑洞结构高灵敏度水听器研究

朱浩 李俊宝 葛晓辉 李德鹏

引用本文:
Citation:

二维声学黑洞结构高灵敏度水听器研究

朱浩, 李俊宝, 葛晓辉, 李德鹏

Study of a high-sensitivity hydrophone based on two-dimensional acoustic black hole structure

ZHU Hao, LI Junbao, GE Xiaohui, LI Depeng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 针对目前水下微弱信号探测对水听器高灵敏度的需求,提出一种声学黑洞结构形式的高灵敏度水听器。从几何声学出发,将声学黑洞中弯曲波汇聚特性类比为水声学中声线弯曲,提出一种波聚集特性简化理论。基于该特性设计了一种二维声学黑洞水听器,通过在弯曲式水听器中引入二维声学黑洞结构,实现振动聚集,进而提升水听器的高灵敏度性能。通过结构控制变量,对比分析四种厚度形式板,验证了声学黑洞板在1.7-5.8kHz频段内提高水听器接收灵敏度的显著优势。分析了声学黑洞结构水听器接收灵敏度起伏较大的原因,并进一步设计了声学黑洞与单端开口Helmholtz液腔耦合水听器,将前两阶声学黑洞弯曲振动模态与液腔模态耦合实现宽带接收特性。制作了两种水听器样机并在消声水池中进行了测试。测试结果表明:二维声学黑洞水听器通过弯曲振动聚集效应可有效提高水听器接收灵敏度,并与液腔结构通过多模态耦合形成宽带,在2.6kHz到5.3kHz频段内灵敏度最高可达-169dB,起伏控制在8dB以内。
    Acoustic black hole (ABH) structures, known for their unique wave-focusing capabilities, have found wide application in the fields of acoustics and vibration. Leveraging this property, this study proposes a novel high-sensitivity hydrophone design incorporating a two-dimensional (2D) ABH structure. Drawing on principles of geometrical acoustics, the wave-converging behavior of bending waves in ABH structures is analogized to acoustic ray bending in underwater acoustics. A simplified theoretical model describing the relationship between the bending wave trajectory and the wave speed gradient in polar coordinates is established for 2D ABH configurations and verified through numerical simulations. Based on this mechanism, a 2D ABH hydrophone is developed by integrating the ABH structure into bending-plate hydrophone, enabling vibration energy concentration and significantly enhancing sensitivity. Comparative studies with hydrophones using uniform-thickness plates and linearly tapered thickness plates as receiving surfaces confirm the superior performance of the ABH hydrophone in the 1.7–5.8 kHz frequency range. To address the pronounced undulations observed in the sensitivity response—attributed to vibration superposition—a liquid cavity of specific length is introduced. This leads to the development of an ABH-Helmholtz-coupled hydrophone (ABHH hydrophone), wherein the first two bending modes of the ABH structure are coupled with the resonant modes of a single-ended open liquid cavity, resulting in broadband reception capability. Prototypes of both hydrophone designs were fabricated and experimentally tested in an anechoic water tank. Results show that both devices achieve peak receiving sensitivities exceeding –169 dB. Notably, the ABHH hydrophone maintains sensitivity fluctuations within 8 dB across the 2.6–5.3 kHz frequency band. This study confirms that 2D ABH structures can effectively enhance hydrophone sensitivity via bending wave convergence and, when coupled with liquid cavity resonators, enable broadband acoustic detection. These findings establish a solid foundation for the application of ABH structures in underwater acoustic transducer design.
  • [1]

    Guang D, Sun X Y, Shi J H, Wu X Q, Zhang G S, Zuo C, Zhu P C, Yu B L 2024 Opt. Express 32, 47721

    [2]

    Yang Y 2022 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [杨悦. 2022 博士学位论文 (长春: 吉林大学)]

    [3]

    Zhou L S, Xu X R 2021 Acta Acust. 46 1250 (in Chinese) [周利生, 许欣然 2021声学学报 46 1250]

    [4]

    Tu X Y, Li J B, Liu X D, Shen J K 2021 Piezoelectr. Acoustoopt. 43 449 (in Chinese) [涂馨予, 李俊宝, 刘晓迪, 申健康 2021 压电与声光 43 449]

    [5]

    Wang H W, Hui H, Rong T 2022 Acta Acust. 47 364 (in Chinese) [王宏伟, 惠辉,荣畋 2022 声学学报 47 364]

    [6]

    Xu Y Z 2020 M.S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese) [徐言哲 2020 硕士学位论文 (武汉: 华中科技大学)]

    [7]

    Xu Y F, Zhou T F, Lan Y 2020 Appl. Sci. Technol. 47 99 (in Chinese) [许延峰, 周天放, 蓝宇 2020 应用科技 47 99]

    [8]

    Kim D, Roh Y 2023 Sensors 23 9086

    [9]

    Li S P, Mo X P, Pan Y Z, Zhang Y Q, Cui B 2017 Acta Acust. 42 729 (in Chinese)[李世平, 莫喜平, 潘耀宗, 张运强, 崔斌 2017 声学学报 42 729]

    [10]

    Li S P, Mo X P, Zhang Y Q, Cui B 2017 Appl. Acoust. 36 54 (in Chinese) [李世平, 莫喜平, 张运强, 崔斌 2017 应用声学 36 54]

    [11]

    Mironov M A 1988 Sov. Phys. Acoust. 34 318

    [12]

    Krylov V V 1989 Sov. Phys. Acoust. 35 176

    [13]

    Huang W, Ji H L, Qiu J H, Cheng L 2018 J. Sound Vib. 417 216

    [14]

    Tang L L, Cheng L, Ji H L, Qiu J H 2016 J. Sound Vib. 374 172

    [15]

    Deng J, Gao N S, Chen X, Han B, Ji H L 2023 Mech. Syst. Signal Proc. 191 110182

    [16]

    Zhao L X, Conlon S C, Semperlotti F 2014 Smart Mater. Struct. 23 065021

    [17]

    Song T T, Zheng L, Deng J 2022 J. Vib. Shock 41 186 (in Chinese) [宋婷婷, 郑玲,邓杰 2022 振动与冲击 41 186]

    [18]

    Liu Y, Chen C, Lin S Y 2024 Acta Phys. Sin. 73 148 (in Chinese) [刘洋, 陈诚, 林书玉 2024 物理学报 73 148]

    [19]

    Chen C, Tang Y F, Ren W B, Wang Y, Guo J Z, Lin S Y 2024 Ultrasonics 143 107417

    [20]

    Wang Y, Chen C, Lin S Y 2025 Acta Phys. Sin. 74 164 (in Chinese) [王怡, 陈诚, 林书玉 2025 物理学报 74 164]

    [21]

    Huang W 2019 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese) [黄薇. 2019 博士学位论文 (南京: 南京航空航 天大学)]

    [22]

    Liu B S, Lei J Y 2010 Principles of Underwater Acoustics (2nd ed.) (Harbin: Harbin Engineering University Press) pp76–82 (in Chinese) [刘伯胜, 雷家煜 2010 水声学原理 (第2版) (哈尔滨: 哈尔滨工程大学出版社) 第76–82页]

    [23]

    Yang R Y, Wu T, Cui B 2022 Proceedings of the Academic Conference of Underwater Acoustic Branch of Acoustics Society of China in 2021~2022 Qingdao, China, August 15, 2022 p393 (in Chinese) [杨荣耀, 吴彤, 崔斌 2022 中国声学学会水声学分会2021~2022年学术会议论文集 青岛, 8月15日, 2022 p393]

    [24]

    Butler J L, Sherman C H 2016 Transducers and Arrays for Underwater Sound (2nd ed.) (Cham: Springer International Publishing) p325

    [25]

    Sang Y J, Lan Y, Ding Y W 2016 Acta Phys. Sin. 65 186 (in Chinese) [桑永杰, 蓝宇, 丁玥文 2016 物理学报 65 186]

    [26]

    Teng D, Yang H 2020 Fundamentals of Hydroacoustic Transducers (2nd ed.)(Xi'an: Northwestern Polytechnical University Press) p220–224 (in Chinese)[滕舵, 杨虎 2020 水声换能器基础 (第2版) (西安: 西北工业大学出版社) 第220–224页]

  • [1] 张秀侦, 莫喜平, 柴勇, 潘瑞, 田芝凤. 凹凸梁型低频指向性弯张换能器. 物理学报, doi: 10.7498/aps.74.20250161
    [2] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真. 物理学报, doi: 10.7498/aps.71.20220722
    [3] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律. 物理学报, doi: 10.7498/aps.71.20211132
    [4] 高飞, 徐芳华, 李整林, 秦继兴. 大陆坡内波环境中声传播模态耦合及强度起伏特征. 物理学报, doi: 10.7498/aps.71.20220634
    [5] 段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清. 宽带腔增强吸收光谱技术应用于大气NO3自由基的测量. 物理学报, doi: 10.7498/aps.70.20201066
    [6] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律研究. 物理学报, doi: 10.7498/aps.70.20211132
    [7] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, doi: 10.7498/aps.70.20201828
    [8] 周子昕, 黄印博, 卢兴吉, 袁子豪, 曹振松. 2 μm波段再入射离轴积分腔输出光谱设计与实验. 物理学报, doi: 10.7498/aps.68.20190061
    [9] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器. 物理学报, doi: 10.7498/aps.68.20191024
    [10] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐. 基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究. 物理学报, doi: 10.7498/aps.65.060701
    [11] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, doi: 10.7498/aps.64.228501
    [12] 李克武, 王志斌, 陈友华, 杨常青, 张瑞. 基于弹光调制的高灵敏旋光测量. 物理学报, doi: 10.7498/aps.64.184206
    [13] 安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军. 碳纳米管/聚二甲基硅氧烷复合薄膜的制备及力敏特性研究. 物理学报, doi: 10.7498/aps.63.237306
    [14] 田赫, 孙伟民, 掌蕴东. 耦合谐振器光波导旋转传感的相位灵敏度. 物理学报, doi: 10.7498/aps.62.194204
    [15] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器. 物理学报, doi: 10.7498/aps.62.084218
    [16] 张喆, 柳倩, 祁志美. 基于金银合金薄膜的近红外表面等离子体共振传感器研究. 物理学报, doi: 10.7498/aps.62.060703
    [17] 娄淑琴, 王鑫, 尹国路, 韩博琳. 基于侧漏型光子晶体光纤高灵敏度宽线性范围弯曲传感器的研究. 物理学报, doi: 10.7498/aps.62.194209
    [18] 逯丹凤, 祁志美. 高灵敏度集成光偏振干涉仪特性及生化传感应用研究. 物理学报, doi: 10.7498/aps.61.114212
    [19] 王泽锋, 胡永明, 孟洲, 罗洪, 倪明. 四阶声低通滤波光纤水听器的声压灵敏度频响特性. 物理学报, doi: 10.7498/aps.58.7034
    [20] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器. 物理学报, doi: 10.7498/aps.55.249
计量
  • 文章访问数:  246
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-25

/

返回文章
返回