搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维声学黑洞结构高灵敏度水听器

朱浩 李俊宝 葛晓辉 李德鹏

引用本文:
Citation:

二维声学黑洞结构高灵敏度水听器

朱浩, 李俊宝, 葛晓辉, 李德鹏

High-sensitivity hydrophone with two-dimensional acoustic black hole structure

ZHU Hao, LI Junbao, GE Xiaohui, LI Depeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 针对目前水下微弱信号探测对水听器高灵敏度的需求, 提出一种声学黑洞结构形式的高灵敏度水听器. 从几何声学出发, 将声学黑洞中弯曲波汇聚特性类比为水声学中声线弯曲, 提出一种波聚集特性简化理论. 基于该特性设计了一种二维声学黑洞水听器, 通过在弯曲式水听器中引入二维声学黑洞结构, 实现振动聚集, 进而提升水听器的高灵敏度性能. 通过结构控制变量, 对比分析4种厚度形式板, 验证了声学黑洞板在1.7—5.8 kHz频段内提高水听器接收灵敏度的显著优势. 分析了声学黑洞结构水听器接收灵敏度起伏较大的原因, 并进一步设计了声学黑洞与单端开口Helmholtz液腔耦合水听器, 将前两阶声学黑洞弯曲振动模态与液腔模态耦合实现宽带接收特性. 制作了两种水听器样机并在消声水池中进行测试. 结果表明, 二维声学黑洞水听器通过弯曲振动聚集效应可有效提高水听器接收灵敏度, 并与液腔结构通过多模态耦合形成宽带, 在2.6—5.3 kHz频段内灵敏度最高可达–169 dB, 起伏控制在8 dB以内.
    Acoustic black hole (ABH) structures are renowned for their unique wave-focusing ability and have been widely utilized in the fields of acoustics and vibration. Based on this property, a novel high-sensitivity hydrophone design incorporating a two-dimensional (2D) ABH structure is proposed in this work. According to the principles of geometrical acoustics, the wave-converging behavior of bending waves in ABH structures is compared to the bending of acoustic ray in underwater acoustics. A simplified theoretical model describing the relationship between the bending wave trajectory and the wave speed gradient in polar coordinates is established for two-dimensional (2D) ABH configurations and verified through numerical simulations. Based on this mechanism, a 2D ABH hydrophone is developed by integrating the ABH structure into bending-plate hydrophone, enabling vibration energy concentration and significantly enhancing sensitivity. The comparative studies of hydrophones using uniform-thickness plates and linearly tapered thickness plates as receiving surfaces confirm the superior performance of the ABH hydrophone in a frequency range of 1.7–5.8 kHz. To address the significant undulations observed in the sensitivity response, which is attributed to vibration superposition, a liquid cavity of specific length is introduced. This leads to the development of an ABH-Helmholtz-coupled hydrophone (ABHH hydrophone), wherein the first two bending modes of the ABH structure are coupled with the resonant modes of a single-ended open liquid cavity, resulting in broadband reception capability. The prototypes of both hydrophone designs are fabricated and experimentally tested in an anechoic water tank. The results show that both devices achieve peak receiving sensitivities exceeding –169 dB. Notably, the ABHH hydrophone maintains sensitivity fluctuations within 8 dB in a frequency band of 2.6–5.3 kHz. This study confirms that 2D ABH structures can effectively improve hydrophone sensitivity through bending wave convergence, and can achieve broadband acoustic detection when the structure is coupled with liquid cavity resonators. These findings lay a solid foundation for the application of ABH structures in the design of underwater acoustic transducer.
  • 图 1  (a) 厚度呈幂律形式变化的梁横截面; (b) 二维ABH结构

    Fig. 1.  (a) Cross-section of a beam with power-law thickness variation; (b) 2D ABH structure.

    图 2  极坐标系中弯曲波轨迹微元几何关系

    Fig. 2.  Geometric relationship of an infinitesimal element along the bending wave trajectory in the polar coordinate system.

    图 3  (a) 嵌入二维ABH凹坑的薄板; (b) 正弦激励信号

    Fig. 3.  (a) Thin plate embedded with a 2D ABH pit; (b) sinusoidal excitation signal.

    图 4  1—7 ms时刻两种板的位移响应 (a)均匀板; (b) 嵌入二维ABH凹坑的薄板

    Fig. 4.  Displacement responses of two types of plates at 1–7 ms: (a) Uniform plate; (b) thin plate embedded with a 2D ABH pit.

    图 5  (a) 二维ABH水听器结构剖面图; (b) ABH板的一维截面

    Fig. 5.  (a) Cross-sectional view of the 2D ABH hydrophone structure; (b) one-dimensional profile of the ABH plate.

    图 6  ABH水听器的有限元模型 (a) 整体图; (b) 局部图

    Fig. 6.  Finite element model of the ABH hydrophone: (a) General view; (b) enlarged view.

    图 7  4种厚度板的一维截面 (a) 均匀厚度$ {h_1} $; (b) 均匀厚度$ {h_2} $; (c) 线性变厚度; (d) ABH

    Fig. 7.  One-dimensional profiles of plates with four thickness types: (a) Uniform thickness $ {h_1} $; (b) uniform thickness $ {h_2} $; (c) linear thickness variation; (d) ABH.

    图 8  4种厚度形式的板作为声波接收面的水听器接收电压灵敏度级曲线

    Fig. 8.  Receiving voltage sensitivity level curves for hydrophones with plates of four thickness types as the acoustic wave receiving surface.

    图 9  4种厚度形式的板作为声波接收面的水听器接收指向性 (a) 2.95 kHz; (b) 5.25 kHz

    Fig. 9.  Receiving directivity of hydrophones with plates of four thickness types as the acoustic wave receiving surface: (a) 2.95 kHz; (b) 5.25 kHz.

    图 10  ABH水听器位移场和稳态声压场的整体图和局部放大图 (a) 2.95 kHz; (b) 5.25 kHz

    Fig. 10.  General and enlarged views of displacement fields and steady-state sound pressure fields for the ABH hydrophone: (a) 2.95 kHz; (b) 5.25 kHz.

    图 11  ABH水听器衍射常数

    Fig. 11.  Diffraction constant of the ABH hydrophone.

    图 12  (a) 面激励等效为无数个同心圆周上线激励叠加; (b) 圆周上线激励近似为无数个线段上线激励叠加

    Fig. 12.  (a) Equivalence of a surface excitation to the superposition of an infinite number of line excitations on concentric circumferences; (b) approximation of a line excitation on a circumference as the superposition of an infinite number of line excitations on line segments.

    图 13  不同位置不同频率激励信号下的位移响应 (a) 圆周1处施加5.86 kHz信号激励; (b) 圆周2处施加5.86 kHz信号激励; (c) 圆周1和2处共同施加5.86 kHz信号激励; (d) 圆周1处施加6.53 kHz信号激励; (e) 圆周2处施加6.53 kHz信号激励; (f) 圆周1和2处共同施加6.53 kHz信号激励

    Fig. 13.  Displacement responses under excitation at different positions and frequencies: (a) Excitation on circumference 1 with a 5.86 kHz signal; (b) excitation on circumference 2 with a 5.86 kHz signal; (c) simultaneous excitation on circumferences 1 and 2 with a 5.86 kHz signal; (d) excitation on circumference 1 with a 6.53 kHz signal; (e) excitation on circumference 2 with a 6.53 kHz signal; (f) simultaneous excitation on circumferences 1 and 2 with a 6.53 kHz signal.

    图 14  ABHH水听器结构剖面图

    Fig. 14.  Cross-sectional view of the ABHH hydrophone structure.

    图 15  ABH水听器和ABHH水听器仿真接收电压灵敏度级曲线对比

    Fig. 15.  Comparison of simulated receiving voltage sensitivity level curves between the ABH hydrophone and the ABHH hydrophone.

    图 16  ABHH水听器改变液腔腔体长度接收电压灵敏度级曲线对比

    Fig. 16.  Comparison of receiving voltage sensitivity level curves for the ABHH hydrophone with variation in the liquid cavity length.

    图 17  ABHH水听器仿真指向性图

    Fig. 17.  Simulated directivity pattern of the ABHH hydrophone.

    图 18  ABHH水听器位移场和稳态声压场的整体图和局部放大图 (a) 2.75 kHz; (b) 3.85 kHz; (c) 5.3 kHz

    Fig. 18.  General and enlarged views of displacement fields and steady-state sound pressure fields for the ABHH hydrophone: (a) 2.75 kHz; (b) 3.85 kHz; (c) 5.3 kHz.

    图 19  ABHH水听器衍射常数

    Fig. 19.  Diffraction constant of the ABHH hydrophone.

    图 20  水听器零件及水密灌封后样机 (a) 水听器金属零件; (b) PZT-5 A压电陶瓷; (c) ABH水听器样机; (d) ABHH水听器样机

    Fig. 20.  Hydrophone components and prototypes after waterproof potting: (a) Metal components; (b) PZT-5 A piezoelectric ceramic; (c) ABH hydrophone prototype; (d) ABHH hydrophone prototype.

    图 21  (a) 水听器接收灵敏度和指向性的实验测量装置; (b) ABH水听器入水姿态; (c) ABHH水听器入水姿态

    Fig. 21.  (a) Experimental setup for measuring hydrophone receiving sensitivity using the comparative method; (b) immersion posture of the ABH hydrophone; (c) immersion posture of the ABHH hydrophone.

    图 22  ABH水听器和ABHH水听器实测接收电压灵敏度级曲线

    Fig. 22.  Measured receiving voltage sensitivity level curves for the ABH hydrophone and ABHH hydrophone.

    图 23  ABH水听器和ABHH水听器实测指向性图

    Fig. 23.  Measured directivity patterns of the ABH hydrophone and ABHH hydrophone.

    表 1  4种厚度形式的板作为声波接收面的水听器性能对比

    Table 1.  Performance comparison of hydrophones with plates of four thickness types as the acoustic wave receiving surface.

    水听器接收面模型 接收灵敏度/dB 指向性–3 dB开角/(°)
    最大值 最大起伏 2.95 kHz 5.25 kHz
    均匀板$ h = {h_1} $ –178.7 21.35 121.6 91.8
    均匀板$ h = {h_2} $ –176.3 33.2 144.8 139.2
    线性变厚度板 –180.6 23.1 153.7 116.6
    ABH板 –167.3 20.7 156.0 99.0
    下载: 导出CSV

    表 2  ABH水听器的仿真与实测性能对比

    Table 2.  Comparison of simulated and measured performance for the ABH hydrophone.

    模态
    阶数
    仿真 实测
    频率
    /kHz
    灵敏度
    /dB
    –3 dB开
    角/(°)
    频率
    /kHz
    灵敏度
    /dB
    –3 dB开
    角/(°)
    1阶 2.95 –167.3 156 2.9 –168.8 120
    2阶 5.25 –168.5 99 5.0 –168.6 85
    下载: 导出CSV

    表 3  ABHH水听器的仿真与实测性能对比

    Table 3.  Comparison of simulated and measured performance for the ABHH hydrophone.

    模态
    阶数
    仿真 实测
    频率
    /kHz
    灵敏度
    /dB
    –3 dB开
    角/(°)
    频率
    /kHz
    灵敏度
    /dB
    –3 dB开
    角/(°)
    1阶 2.75 –167.0 160 2.8 –170.4 135
    2阶 3.85 –168.4 96 3.6 –173.9 95
    3阶 5.30 –167.8 64 5.0 –169.0 69
    下载: 导出CSV
  • [1]

    Guang D, Sun X Y, Shi J H, Wu X Q, Zhang G S, Zuo C, Zhu P C, Yu B L 2024 Opt. Express 32 47721Google Scholar

    [2]

    杨悦 2022 博士学位论文 (长春: 吉林大学)

    Yang Y 2022 Ph. D. Dissertation (Changchun: Jilin University

    [3]

    周利生, 许欣然 2021 声学学报 46 1250

    Zhou L S, Xu X R 2021 Acta Acust. 46 1250

    [4]

    涂馨予, 李俊宝, 刘晓迪, 申健康 2021 压电与声光 43 449Google Scholar

    Tu X Y, Li J B, Liu X D, Shen J K 2021 Piezoelectr. Acoustoopt. 43 449Google Scholar

    [5]

    王宏伟, 惠辉, 荣畋 2022 声学学报 47 364

    Wang H W, Hui H, Rong T 2022 Acta Acust. 47 364

    [6]

    徐言哲 2020 硕士学位论文 (武汉: 华中科技大学)

    Xu Y Z 2020 M. S. Thesis (Wuhan: Huazhong University of Science and Technology

    [7]

    许延峰, 周天放, 蓝宇 2020 应用科技 47 99

    Xu Y F, Zhou T F, Lan Y 2020 Appl. Sci. Technol. 47 99

    [8]

    Kim D, Roh Y 2023 Sensors 23 9086

    [9]

    李世平, 莫喜平, 潘耀宗, 张运强, 崔斌 2017 声学学报 42 729

    Li S P, Mo X P, Pan Y Z, Zhang Y Q, Cui B 2017 Acta Acust. 42 729

    [10]

    李世平, 莫喜平, 张运强, 崔斌 2017 应用声学 36 54

    Li S P, Mo X P, Zhang Y Q, Cui B 2017 Appl. Acoust. 36 54

    [11]

    Mironov M A 1988 Sov. Phys. Acoust. 34 318

    [12]

    Krylov V V 1989 Sov. Phys. Acoust. 35 176

    [13]

    Huang W, Ji H L, Qiu J H, Cheng L 2018 J. Sound Vib. 417 216Google Scholar

    [14]

    Tang L L, Cheng L, Ji H L, Qiu J H 2016 J. Sound Vib. 374 172Google Scholar

    [15]

    Deng J, Gao N S, Chen X, Han B, Ji H L 2023 Mech. Syst. Signal Proc. 191 110182Google Scholar

    [16]

    Zhao L X, Conlon S C, Semperlotti F 2014 Smart Mater. Struct. 23 065021Google Scholar

    [17]

    宋婷婷, 郑玲, 邓杰 2022 振动与冲击 41 186

    Song T T, Zheng L, Deng J 2022 J. Vib. Shock 41 186

    [18]

    刘洋, 陈诚, 林书玉 2024 物理学报 73 148

    Liu Y, Chen C, Lin S Y 2024 Acta Phys. Sin. 73 148

    [19]

    Chen C, Tang Y F, Ren W B, Wang Y, Guo J Z, Lin S Y 2024 Ultrasonics 143 107417Google Scholar

    [20]

    王怡, 陈诚, 林书玉 2025 物理学报 74 044303Google Scholar

    Wang Y, Chen C, Lin S Y 2025 Acta Phys. Sin. 74 044303Google Scholar

    [21]

    黄薇 2019 博士学位论文 (南京: 南京航空航天大学)

    Huang W 2019 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics

    [22]

    刘伯胜, 雷家煜 2010 水声学原理 (第2版) (哈尔滨: 哈尔滨工程大学出版社) 第76–82页

    Liu B S, Lei J Y 2010 Principles of Underwater Acoustics (2nd ed. ) (Harbin: Harbin Engineering University Press) pp76–82

    [23]

    杨荣耀, 吴彤, 崔斌 2022 中国声学学会水声学分会2021—2022年学术会议论文集 中国青岛, 2022年8月15日 第393页

    Yang R Y, Wu T, Cui B 2022 Proceedings of the Academic Conference of Underwater Acoustic Branch of Acoustics Society of China in 2021—2022 Qingdao, China, August 15, 2022 p393

    [24]

    Butler J L, Sherman C H 2016 Transducers and Arrays for Underwater Sound (2nd ed. ) (Cham: Springer International Publishing) p325

    [25]

    桑永杰, 蓝宇, 丁玥文 2016 物理学报 65 024301Google Scholar

    Sang Y J, Lan Y, Ding Y W 2016 Acta Phys. Sin. 65 024301Google Scholar

    [26]

    滕舵, 杨虎 2020 水声换能器基础 (第2版) (西安: 西北工业大学出版社) 第220–224页

    Teng D, Yang H 2020 Fundamentals of Hydroacoustic Transducers (2nd ed. ) (Xi'an: Northwestern Polytechnical University Press) pp220–224

  • [1] 张秀侦, 莫喜平, 柴勇, 潘瑞, 田芝凤. 凹凸梁型低频指向性弯张换能器. 物理学报, doi: 10.7498/aps.74.20250161
    [2] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真. 物理学报, doi: 10.7498/aps.71.20220722
    [3] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律. 物理学报, doi: 10.7498/aps.71.20211132
    [4] 高飞, 徐芳华, 李整林, 秦继兴. 大陆坡内波环境中声传播模态耦合及强度起伏特征. 物理学报, doi: 10.7498/aps.71.20220634
    [5] 段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清. 宽带腔增强吸收光谱技术应用于大气NO3自由基的测量. 物理学报, doi: 10.7498/aps.70.20201066
    [6] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律研究. 物理学报, doi: 10.7498/aps.70.20211132
    [7] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, doi: 10.7498/aps.70.20201828
    [8] 周子昕, 黄印博, 卢兴吉, 袁子豪, 曹振松. 2 μm波段再入射离轴积分腔输出光谱设计与实验. 物理学报, doi: 10.7498/aps.68.20190061
    [9] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器. 物理学报, doi: 10.7498/aps.68.20191024
    [10] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐. 基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究. 物理学报, doi: 10.7498/aps.65.060701
    [11] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, doi: 10.7498/aps.64.228501
    [12] 李克武, 王志斌, 陈友华, 杨常青, 张瑞. 基于弹光调制的高灵敏旋光测量. 物理学报, doi: 10.7498/aps.64.184206
    [13] 安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军. 碳纳米管/聚二甲基硅氧烷复合薄膜的制备及力敏特性研究. 物理学报, doi: 10.7498/aps.63.237306
    [14] 田赫, 孙伟民, 掌蕴东. 耦合谐振器光波导旋转传感的相位灵敏度. 物理学报, doi: 10.7498/aps.62.194204
    [15] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器. 物理学报, doi: 10.7498/aps.62.084218
    [16] 张喆, 柳倩, 祁志美. 基于金银合金薄膜的近红外表面等离子体共振传感器研究. 物理学报, doi: 10.7498/aps.62.060703
    [17] 娄淑琴, 王鑫, 尹国路, 韩博琳. 基于侧漏型光子晶体光纤高灵敏度宽线性范围弯曲传感器的研究. 物理学报, doi: 10.7498/aps.62.194209
    [18] 逯丹凤, 祁志美. 高灵敏度集成光偏振干涉仪特性及生化传感应用研究. 物理学报, doi: 10.7498/aps.61.114212
    [19] 王泽锋, 胡永明, 孟洲, 罗洪, 倪明. 四阶声低通滤波光纤水听器的声压灵敏度频响特性. 物理学报, doi: 10.7498/aps.58.7034
    [20] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器. 物理学报, doi: 10.7498/aps.55.249
计量
  • 文章访问数:  502
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-09
  • 修回日期:  2025-07-27
  • 上网日期:  2025-08-25

/

返回文章
返回