搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽带腔增强吸收光谱技术应用于大气NO3自由基的测量

段俊 唐科 秦敏 王丹 王牧笛 方武 孟凡昊 谢品华 刘建国 刘文清

引用本文:
Citation:

宽带腔增强吸收光谱技术应用于大气NO3自由基的测量

段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清

Broadband cavity enhanced absorption spectroscopy for measuring atmospheric NO3 radical

Duan Jun, Tang Ke, Qin Min, Wang Dan, Wang Mu-Di, Fang Wu, Meng Fan-Hao, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing
PDF
HTML
导出引用
  • NO3自由基是夜间大气化学中最重要的氧化剂, 控制着多种痕量气体成分的氧化及去除, 了解NO3自由基的化学过程对研究灰霾等大气污染过程意义重大. NO3自由基浓度低、活性强, 实现大气NO3自由基的高灵敏度准确测量相对困难. 本文介绍了大气NO3自由基的宽带腔增强吸收光谱定量方法, 采用红光LED作为宽带腔增强吸收光谱系统光源, 设计低损耗且适合国内高颗粒物环境的采样气路, 并通过LED光源测试确定最佳工作电流和温度; 通过采用白天的大气谱作为背景光谱参与NO3自由基的光谱拟合过程,减少水汽对NO3自由基光谱反演的干扰;通过对镜片反射率和有效腔长进行标定, 对系统性能进行Allan方差分析, 该宽带腔增强吸收光谱系统在光谱采集时间为10 s的情况下, NO3自由基极限探测灵敏度为0.75 pptv, 总测量误差约为16%. 在合肥开展了实际大气NO3自由基观测, 观测期间NO3自由基的浓度范围从低于探测限到23.4 pptv, NO3自由基浓度呈现夜间高、白天低的特征, 符合NO3 变化规律, 表明该宽带腔增强吸收光谱系统能够用于实际大气NO3自由基的高灵敏度测量.
    NO3 radical is the most important oxidant in atmospheric chemistry at night, and it controls the oxidation and removal of various trace gas components in the atmosphere. The understanding of the chemical process of NO3 radical is of great significance for studying the atmospheric pollution processes such as haze. The NO3 radical has a low concentration and strong activity, so it is relatively difficult to measure accurately. We report here in this paper an instrument for unambiguously measuring NO3 based on broadband cavity enhanced absorption spectroscopy (BBCEAS). To achieve the robust performance and system stability under diverse conditions, this BBCEAS instrument has been developed, with efficient sampling, and resistance against vibration and temperature change improved, and the BBCEAS instrument also has low-power consumption. The 660-nm-wavelemngth light-emitting diode (LED) is used as a light source of the BBCEAS system. The sampling gas path with low loss and suitable for domestic high-particle environment is designed. Through the LED light source test, the optimal working current and temperature can be obtained to achieve the acquisition of NO3 absorption spectrum with high signal-to-noise ratio. Considering the fact that the water vapor absorption is an important interference factor for the measurement of NO3 radical by BBCEAS, the daytime atmospheric measurement spectrum is used as a background spectrum, and participates in spectral fitting of NO3 to reduce the effect of water vapor. The mirror reflectivity and effective cavity length are calibrated, and the Allan variance analysis is also carried out. The reflectance of the mirror can reach about 0.99993 at 662 nm (NO3 absorption peak), and the corresponding theoretical effective optical path can reach more than 7 km, which can meet the measurement requirements of atmospheric NO3 radicals. The detection limit (1σ) of 0.75 pptv for NO3 is achieved with an acquisition time of 10 s and a total measurement error of about 16%. The atmospheric NO3 radical observation is carried out in Hefei. During the observation period, the highest NO3 concentration is 23.4 pptv, demonstrating the promising potential applications in in-situ, sensitive, accurate and fast simultaneous measurements of NO3 in the future by using the developed broadband cavity enhanced absorption spectroscopy.
      通信作者: 秦敏, mqin@aiofm.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFC0209400)、国家自然科学基金(批准号: 41705015, 41905130)、安徽省科协2020年青年科技人才托举计划(RCTJ202002)和中国科学院安徽光机所所长基金(批准号: AGHH201601)资助的课题
      Corresponding author: Qin Min, mqin@aiofm.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFC0209400), the National Natural Science Foundation of China (Grant Nos. 41705015, 41905130),Youth Science and Technology Talents Support Program (2020) by Anhui Association for Science and Technology (Grant No. RCTJ202002) and the Foundation of Director of Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China (Grant No. AGHH201601)
    [1]

    Levy H 1971 Science 173 141Google Scholar

    [2]

    Wayne R P, Barnes I, Biggs P, Burrows J P, Canosamas C E, Hjorth J, Lebras G, Moortgat G K, Perner D, Poulet G, Restelli G, Sidebottom H 1991 Atmos. Environ. Part A 25 1

    [3]

    Platt U, Alicke B, Dubois R, Geyer A, Hofzumahaus A, Holland F, Martinez M, Mihelcic D, Klupfel T, Lohrmann B, Patz W, Perner D, Rohrer F, Schafer J, Stutz J 2002 J. Atmos. Chem. 42 359Google Scholar

    [4]

    Stutz J, Alicke B, Ackermann R, Geyer A, White A, Williams E 2004 J. Geophys. Res. Atmos. 109 D12306Google Scholar

    [5]

    Platt U, Perner D, Winer A M, Harris G W, Pitts J N 1980 Geophys. Res. Lett. 7 89Google Scholar

    [6]

    Wood E C, Wooldridge P J, Freese J H, Albrecht T, Cohen R C 2003 Environ. Sci. Technol. 37 5732Google Scholar

    [7]

    Slusher D L, Huey L G, Tanner D J, Flocke F M, Roberts J M 2004 J. Geophys. Res. Atmos. 109 D19315Google Scholar

    [8]

    Mihelcic D, Volzthomas A, Patz H W, Kley D 1990 J. Atmos. Chem. 11 271Google Scholar

    [9]

    Wang D, Hu R, Xie P, Liu J, Liu W, Qin M, Ling L, Zeng Y, Chen H, Xing X, Zhu G, Wu J, Duan J, Lu X, Shen L 2015 J. Quant. Spectrosc. Radiat. Transfer 166 25

    [10]

    Wang H, Chen J, Lu K 2017 Atmos. Meas. Tech. 10 1465Google Scholar

    [11]

    Wagner N L, Dube W P, Washenfelder R A, Young C J, Pollack I B, Ryerson T B, Brown S S 2011 Atmos. Meas. Tech. 4 1227Google Scholar

    [12]

    Li Z, Hu R, Xie P, Wang H, Lu K, Wang D 2018 Sci. Total Environ. 613 131

    [13]

    Li Z, Hu R, Xie P, Hao C, Liu W 2018 Opt. Express 26 A433Google Scholar

    [14]

    Ling L, Xie P, Qin M, Fang W, Jiang Y, Hu R, Zheng N 2013 Chin. Opt. Lett. 11 063001Google Scholar

    [15]

    Ball S M, Langridge J M, Jones R L 2004 Chem. Phys. Lett. 398 68Google Scholar

    [16]

    Langridge J M, Ball S M, Jones R L 2006 Analyst 131 916Google Scholar

    [17]

    Kennedy O J, Ouyang B, Langridge J M, Daniels M J S, Bauguitte S, Freshwater R, McLeod M W, Ironmonger C, Sendall J, Norris O, Nightingale R, Ball S M, Jones R L 2011 Atmos. Meas. Tech. 4 1759Google Scholar

    [18]

    Vaughan S, Gherman T, Ruth A A, Orphal J 2008 Phys. Chem. Chem. Phys. 10 4471Google Scholar

    [19]

    Wu T, Chen W, Fertein E, Cazier F, Dewaele D, Gao X 2011 Appl. Phys. B 106 501

    [20]

    Gherman T, Venables D S, Vaughan S, Orphal J, Ruth A A 2007 Environ. Sci. Technol. 42 890

    [21]

    Min K E, Washenfelder R A, Dubé W P, Langford A O, Edwards P M, Zarzana K J, Stutz J, Lu K, Rohrer F, Zhang Y, Brown S S 2016 Atmos. Meas. Tech. 9 423Google Scholar

    [22]

    Duan J, Qin M, Ouyang B, Fang W, Li X, Lu K, Tang K, Liang S, Meng F, Hu Z, Xie P, Liu W, Häsler R 2018 Atmos. Meas. Tech. 11 4531Google Scholar

    [23]

    Thalman R, Volkamer R 2010 Atmos. Meas. Tech. 3 1797Google Scholar

    [24]

    Liang S, Qin M, Xie P, Duan J, Fang W, He Y, Xu J, Liu J, Li X, Tang K, Meng F, Ye K, Liu J, Liu W 2019 Atmos. Meas. Tech. 12 2499Google Scholar

    [25]

    Hoch D J, Buxmann J, Sihler H, Pöhler D, Zetzsch C, Platt U 2014 Atmos. Meas. Tech. 7 199Google Scholar

    [26]

    Dorn H P, Apodaca R L, Ball S M, Brauers T, Brown S S, Crowley J N, Dubé W P, Fuchs H, Häseler R, Heitmann U, Jones R L, Kiendler-Scharr A, Labazan I, Langridge J M, Meinen J, Mentel T F, Platt U, Pöhler D, Rohrer F, Ruth A A, Schlosser E, Schuster G, Shillings A J L, Simpson W R, Thieser J, Tillmann R, Varma R, Venables D S, Wahner A 2013 Atmos. Meas. Tech. 6 1111Google Scholar

    [27]

    Venables D S, Gherman T, Orphal J, Wenger J C, Ruth A A 2006 Environ. Sci. Technol. 40 6758Google Scholar

    [28]

    Meinen J, Thieser J, Platt U, Leisner T 2010 Atmos. Chem. Phys. 10 3901Google Scholar

    [29]

    Wu T, Coeur-Tourneur C, Dhont G, Cassez A, Fertein E, He X, Chen W 2014 J. Quant. Spectrosc. Radiat. Transfer 133 199Google Scholar

    [30]

    Fiedler S E, Hese A, Ruth A A 2003 Chem. Phys. Lett. 371 284Google Scholar

    [31]

    Lu X, Qin M, Xie P H, Duan J, Fang W, Ling L Y, Shen L L, Liu J G, Liu W Q 2016 Chin. Phys. B 25 024210Google Scholar

    [32]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779Google Scholar

    [33]

    Shardanand, Rao A D P 1977 NASA Technical Note

    [34]

    Kern C, Trick S, Rippel B, Platt U 2006 Appl. Opt. 45 2077Google Scholar

    [35]

    Yokelson R J, Burkholder J B, Fox R W, Talukdar R K, Ravishankara A R 1994 J. Phys. Chem. 98 13144Google Scholar

    [36]

    Voigt S, Orphal J, Burrows J P 2002 J. Photochem. Photobiol., A 149 1Google Scholar

    [37]

    Rothman L S, Jacquemart D, Barbe A, Benner D C, Birk M, Brown L R, Carleer M R, Chackerian C, Chance K, Coudert L H 2005 J. Quant. Spectrosc. Radiat. Transfer 96 139Google Scholar

    [38]

    Qin M, Xie P, Su H, Gu J, Peng F, Li S, Zeng L, Liu J, Liu W, Zhang Y 2009 Atmos. Environ. 43 5731Google Scholar

  • 图 1  基于红光LED的宽带腔增强吸收光谱系统示意图

    Fig. 1.  The schematic diagram of broadband cavity enhanced absorption spectrometer based on red LED.

    图 2  LED光源测试 (a) LED光谱随电流变化规律; (b) LED光谱随温度变化规律

    Fig. 2.  Test of the LED light source: (a) LED spectrum changes with the current; (b) LED spectrum changes with temperature.

    图 3  镜面反射率标定 (a)黑线是氮气谱, 红线是氦气谱; (b)蓝线为镜面反射率曲线

    Fig. 3.  Calibrations of mirror reflectivity: (a) The black line is nitrogen spectrum, and the red line is helium spectrum; (b) the blue line is the derived curve of mirror reflectivity.

    图 4  有效腔长标定 (a)NO2光谱拟合结果(b) NO2浓度时间序列

    Fig. 4.  Calibration of effective cavity length: (a) Results of NO2 spectral fitting; (b) time series of NO2.

    图 5  实测大气中NO3的光谱反演实例 (a) 灰线是实测大气的吸收谱, 红线是拟合谱; (b) 灰线是NO3的吸收谱, 红线是拟合谱, 反演浓度12.2 ± 0.61 pptv; (c) 灰线是NO2的相对吸收谱, 红线是拟合谱; (d) 灰线是水汽的相对吸收谱, 红线是拟合谱; (e) 拟合残差谱, 标准偏差为8.7 × 10–10

    Fig. 5.  Spectral inversion example of NO3: (a) The grey line is the absorption spectrum of the measured atmosphere, and the red line is the fitting spectrum; (b) the gray line is the absorption spectrum of NO3 and the red line is the fitting spectrum, concentration of NO3 is 12.2 ± 0.61 pptv; (c) the grey line is the relative absorption spectrum of NO2, and the red line is the fitting spectrum; (d) the gray line is the relative absorption spectrum of water vapor, and the red line is the fitting spectrum; (e) the gray line is residual spectrum, and the standard deviation of residual spectrum is 8.7 × 10–10.

    图 6  检测限分析 (a) NO3的Allan方差和标准方差随平均时间的变化曲线; (b) 4 s积分时间情况下的NO3浓度统计图; (c) 4 s积分时间情况下的NO3浓度时间序列

    Fig. 6.  Analysis of detection limit: (a) Change curves of Allan variance and standard variance of NO3 with average time; (b) statistical chart of NO3 concentration with 4 s integration time; (c) time series of NO3 concentration with 4 s integration time.

    图 7  观测期间大气NO3, O3, NO2, SO2时间序列

    Fig. 7.  Time series of Atmospheric NO3, O3, NO2 and SO2 during observation.

  • [1]

    Levy H 1971 Science 173 141Google Scholar

    [2]

    Wayne R P, Barnes I, Biggs P, Burrows J P, Canosamas C E, Hjorth J, Lebras G, Moortgat G K, Perner D, Poulet G, Restelli G, Sidebottom H 1991 Atmos. Environ. Part A 25 1

    [3]

    Platt U, Alicke B, Dubois R, Geyer A, Hofzumahaus A, Holland F, Martinez M, Mihelcic D, Klupfel T, Lohrmann B, Patz W, Perner D, Rohrer F, Schafer J, Stutz J 2002 J. Atmos. Chem. 42 359Google Scholar

    [4]

    Stutz J, Alicke B, Ackermann R, Geyer A, White A, Williams E 2004 J. Geophys. Res. Atmos. 109 D12306Google Scholar

    [5]

    Platt U, Perner D, Winer A M, Harris G W, Pitts J N 1980 Geophys. Res. Lett. 7 89Google Scholar

    [6]

    Wood E C, Wooldridge P J, Freese J H, Albrecht T, Cohen R C 2003 Environ. Sci. Technol. 37 5732Google Scholar

    [7]

    Slusher D L, Huey L G, Tanner D J, Flocke F M, Roberts J M 2004 J. Geophys. Res. Atmos. 109 D19315Google Scholar

    [8]

    Mihelcic D, Volzthomas A, Patz H W, Kley D 1990 J. Atmos. Chem. 11 271Google Scholar

    [9]

    Wang D, Hu R, Xie P, Liu J, Liu W, Qin M, Ling L, Zeng Y, Chen H, Xing X, Zhu G, Wu J, Duan J, Lu X, Shen L 2015 J. Quant. Spectrosc. Radiat. Transfer 166 25

    [10]

    Wang H, Chen J, Lu K 2017 Atmos. Meas. Tech. 10 1465Google Scholar

    [11]

    Wagner N L, Dube W P, Washenfelder R A, Young C J, Pollack I B, Ryerson T B, Brown S S 2011 Atmos. Meas. Tech. 4 1227Google Scholar

    [12]

    Li Z, Hu R, Xie P, Wang H, Lu K, Wang D 2018 Sci. Total Environ. 613 131

    [13]

    Li Z, Hu R, Xie P, Hao C, Liu W 2018 Opt. Express 26 A433Google Scholar

    [14]

    Ling L, Xie P, Qin M, Fang W, Jiang Y, Hu R, Zheng N 2013 Chin. Opt. Lett. 11 063001Google Scholar

    [15]

    Ball S M, Langridge J M, Jones R L 2004 Chem. Phys. Lett. 398 68Google Scholar

    [16]

    Langridge J M, Ball S M, Jones R L 2006 Analyst 131 916Google Scholar

    [17]

    Kennedy O J, Ouyang B, Langridge J M, Daniels M J S, Bauguitte S, Freshwater R, McLeod M W, Ironmonger C, Sendall J, Norris O, Nightingale R, Ball S M, Jones R L 2011 Atmos. Meas. Tech. 4 1759Google Scholar

    [18]

    Vaughan S, Gherman T, Ruth A A, Orphal J 2008 Phys. Chem. Chem. Phys. 10 4471Google Scholar

    [19]

    Wu T, Chen W, Fertein E, Cazier F, Dewaele D, Gao X 2011 Appl. Phys. B 106 501

    [20]

    Gherman T, Venables D S, Vaughan S, Orphal J, Ruth A A 2007 Environ. Sci. Technol. 42 890

    [21]

    Min K E, Washenfelder R A, Dubé W P, Langford A O, Edwards P M, Zarzana K J, Stutz J, Lu K, Rohrer F, Zhang Y, Brown S S 2016 Atmos. Meas. Tech. 9 423Google Scholar

    [22]

    Duan J, Qin M, Ouyang B, Fang W, Li X, Lu K, Tang K, Liang S, Meng F, Hu Z, Xie P, Liu W, Häsler R 2018 Atmos. Meas. Tech. 11 4531Google Scholar

    [23]

    Thalman R, Volkamer R 2010 Atmos. Meas. Tech. 3 1797Google Scholar

    [24]

    Liang S, Qin M, Xie P, Duan J, Fang W, He Y, Xu J, Liu J, Li X, Tang K, Meng F, Ye K, Liu J, Liu W 2019 Atmos. Meas. Tech. 12 2499Google Scholar

    [25]

    Hoch D J, Buxmann J, Sihler H, Pöhler D, Zetzsch C, Platt U 2014 Atmos. Meas. Tech. 7 199Google Scholar

    [26]

    Dorn H P, Apodaca R L, Ball S M, Brauers T, Brown S S, Crowley J N, Dubé W P, Fuchs H, Häseler R, Heitmann U, Jones R L, Kiendler-Scharr A, Labazan I, Langridge J M, Meinen J, Mentel T F, Platt U, Pöhler D, Rohrer F, Ruth A A, Schlosser E, Schuster G, Shillings A J L, Simpson W R, Thieser J, Tillmann R, Varma R, Venables D S, Wahner A 2013 Atmos. Meas. Tech. 6 1111Google Scholar

    [27]

    Venables D S, Gherman T, Orphal J, Wenger J C, Ruth A A 2006 Environ. Sci. Technol. 40 6758Google Scholar

    [28]

    Meinen J, Thieser J, Platt U, Leisner T 2010 Atmos. Chem. Phys. 10 3901Google Scholar

    [29]

    Wu T, Coeur-Tourneur C, Dhont G, Cassez A, Fertein E, He X, Chen W 2014 J. Quant. Spectrosc. Radiat. Transfer 133 199Google Scholar

    [30]

    Fiedler S E, Hese A, Ruth A A 2003 Chem. Phys. Lett. 371 284Google Scholar

    [31]

    Lu X, Qin M, Xie P H, Duan J, Fang W, Ling L Y, Shen L L, Liu J G, Liu W Q 2016 Chin. Phys. B 25 024210Google Scholar

    [32]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779Google Scholar

    [33]

    Shardanand, Rao A D P 1977 NASA Technical Note

    [34]

    Kern C, Trick S, Rippel B, Platt U 2006 Appl. Opt. 45 2077Google Scholar

    [35]

    Yokelson R J, Burkholder J B, Fox R W, Talukdar R K, Ravishankara A R 1994 J. Phys. Chem. 98 13144Google Scholar

    [36]

    Voigt S, Orphal J, Burrows J P 2002 J. Photochem. Photobiol., A 149 1Google Scholar

    [37]

    Rothman L S, Jacquemart D, Barbe A, Benner D C, Birk M, Brown L R, Carleer M R, Chackerian C, Chance K, Coudert L H 2005 J. Quant. Spectrosc. Radiat. Transfer 96 139Google Scholar

    [38]

    Qin M, Xie P, Su H, Gu J, Peng F, Li S, Zeng L, Liu J, Liu W, Zhang Y 2009 Atmos. Environ. 43 5731Google Scholar

  • [1] 严涌飚, 李霜, 丁双双, 张冰雪, 孙浩, 鞠泉浩, 姚露. 基质${\text{VO}}_4^{3 - }$与掺杂离子Pr3+荧光强度比的新型高灵敏度光学测温研究. 物理学报, 2024, 73(9): 097801. doi: 10.7498/aps.73.20240012
    [2] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真. 物理学报, 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [3] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [4] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊. 双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法. 物理学报, 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [5] 田晶, 侯美江, 江阳, 张红旭, 白光富, 冯豪. 一种高灵敏度复合环形腔结构的光纤激光拍频位移传感方案. 物理学报, 2020, 69(18): 184217. doi: 10.7498/aps.69.20200385
    [6] 周子昕, 黄印博, 卢兴吉, 袁子豪, 曹振松. 2 μm波段再入射离轴积分腔输出光谱设计与实验. 物理学报, 2019, 68(12): 129201. doi: 10.7498/aps.68.20190061
    [7] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器. 物理学报, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [8] 丁武文, 孙利群, 衣路英. 基于可调谐半导体激光器吸收光谱的高灵敏度甲烷浓度遥测技术. 物理学报, 2017, 66(10): 100702. doi: 10.7498/aps.66.100702
    [9] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐. 基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究. 物理学报, 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [10] 李志彬, 马宏亮, 曹振松, 孙明国, 黄印博, 朱文越, 刘强. 2μm波段高灵敏度离轴积分腔装置实际大气CO2测量. 物理学报, 2016, 65(5): 053301. doi: 10.7498/aps.65.053301
    [11] 李克武, 王志斌, 陈友华, 杨常青, 张瑞. 基于弹光调制的高灵敏旋光测量. 物理学报, 2015, 64(18): 184206. doi: 10.7498/aps.64.184206
    [12] 安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军. 碳纳米管/聚二甲基硅氧烷复合薄膜的制备及力敏特性研究. 物理学报, 2014, 63(23): 237306. doi: 10.7498/aps.63.237306
    [13] 张喆, 柳倩, 祁志美. 基于金银合金薄膜的近红外表面等离子体共振传感器研究. 物理学报, 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [14] 娄淑琴, 王鑫, 尹国路, 韩博琳. 基于侧漏型光子晶体光纤高灵敏度宽线性范围弯曲传感器的研究. 物理学报, 2013, 62(19): 194209. doi: 10.7498/aps.62.194209
    [15] 逯丹凤, 祁志美. 高灵敏度集成光偏振干涉仪特性及生化传感应用研究. 物理学报, 2012, 61(11): 114212. doi: 10.7498/aps.61.114212
    [16] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊. 宽带腔增强吸收光谱技术应用于痕量气体探测及气溶胶消光系数测量. 物理学报, 2012, 61(6): 060702. doi: 10.7498/aps.61.060702
    [17] 章法强, 杨建伦, 李正宏, 钟耀华, 叶 凡, 秦 义, 陈法新, 应纯同, 刘广均. 高灵敏度的快中子照相系统. 物理学报, 2007, 56(1): 583-588. doi: 10.7498/aps.56.583
    [18] 范树海, 贺洪波, 邵建达, 范正修, 赵元安. 表面热透镜薄膜吸收测量灵敏度提高方法. 物理学报, 2006, 55(2): 758-763. doi: 10.7498/aps.55.758
    [19] 潘少华. 关于腔内光谱机理和灵敏度的分析. 物理学报, 1981, 30(9): 1270-1274. doi: 10.7498/aps.30.1270
    [20] 吴大猷. Ni(NO3)2·6NH3晶体之拉曼光谱:结晶力场对NO3-之影响. 物理学报, 1944, 5(2): 180-186. doi: 10.7498/aps.5.180
计量
  • 文章访问数:  7820
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-05
  • 修回日期:  2020-08-14
  • 上网日期:  2020-12-19
  • 刊出日期:  2021-01-05

/

返回文章
返回