-
提出并验证了一种高灵敏度复合环形腔结构的激光拍频位移传感技术方案. 该方案采用环形腔复合直腔的谐振腔结构, 利用激光拍频传感原理实现传感系统信号的解调. 该结构通过掺饵光纤放大器提供增益, 采用光纤布拉格光栅作为传感头兼直腔反射镜, 利用π相移光栅进行窄带滤波. 理论分析结果表明激光拍频频率随传感头应变的增加线性减小; 实验结果显示, 当监测频率为1.7483 GHz时, 传感器的灵敏度达到了86.19 kHz/mm, 线性拟合度为0.9973, 最小可分辨位移为10 μm左右, 该系统同时具有空间位置分辨的潜力. 结果表明所提出的新型位移传感方案是可行的, 结构紧凑、简单实用、灵敏度高, 为将来实现高精度、微型化以及分布式传感系统打下基础.A novel fiber sensor based compound ring laser cavity with linear variation of frequency is proposed and demonstrated experimentally. The compound ring laser cavity is comprised of a ring cavity and a straight cavity. This system can generate the beat frequency spectrum by employing an erbium doped fiber amplifier, a fiber Bragg grating is used as a sensor head and the straight cavity reflector, a π phase shifted fiber Bragg grating serves as a microwave photonic passband filter. The principle of the proposed sensor is theoretically analyzed, showing that as the displacement increases the beat frequency decreases, and there exists a linear relationship between displacement change and beat frequency shift. In experiment, it is shown that the sensor has a high sensitivity of about 86.19 kHz/mm and can achieve a good linear response (R2 = 0.9973), and that the minimum monitored displacement is about 10 μm. The measurement results demonstrate that the sensor is accurate, sensitive, and the proposed sensor system has a compact and simple structure, which makes it convenient for more applications in future.
-
Keywords:
- fiber laser sensor /
- compound ring laser cavity /
- beat frequency /
- erbium doped fiber amplifier
[1] Liu Y, Qin Q, Liu H H, Tan Z W, Wang M G 2018 Opt. Fiber Technol. 46 48Google Scholar
[2] Xu Y L, Zhang X H, Zhu S Y, Zhan S 2016 Sci. Bull. 61 313Google Scholar
[3] Yang Chen, Oyadiji S O 2016 Sens. Actuator A-Phys. 244 1Google Scholar
[4] Yamaguchi T, Endo W, Shinoda Y 2019 IEEE Sens. J. 19 10519Google Scholar
[5] Tanaka Y, Furukawa O, Tsuchiya K 2018 Appl. Phys. Express 11 112501Google Scholar
[6] Guo T, Liu F, Guan B O, Albert J 2016 Opt. Laser Technol. 78 19Google Scholar
[7] Ahmad H, Aidit S N, Ooi S I, Tiu Z C 2018 IEEE Sens. J. 18 8275Google Scholar
[8] Kim H H, Choi S J, Jeon K S, Pan J K 2016 Sensors 16 1Google Scholar
[9] Kisala P, Harasim D, Mroczka J 2016 Opt. Express 24 29922Google Scholar
[10] Huang B S, Xiong S S, Chen Z S, Zhu S F, Zhang H, Huang X C, Feng Y H, Gao S C, Chen S, Liu W P, Li Z H 2019 IEEE Sens. J. 19 5632Google Scholar
[11] Liu Z G, Zhang X P, Gong Z F, Zhang Y, Peng W 2016 IEEE Photonics Technol. Lett. 28 1723Google Scholar
[12] Huang L, Liu S J, Liu R Z, Guo Y, Chen X F 2018 IEEE Photonics Technol. Lett. 30 1621Google Scholar
[13] Enriquez-Gomeze L E, Guerrero-Viramontes J A, Martinez-Rios A, Salceda-Delgadoe G, Toral-Acosta D, Porraz-Culebro T E, Selvas-Aguilar R, Madrazo-de-Rosa K, Anzueto-Sanchez G 2020 IEEE Photonics Technol. Lett. 32 93Google Scholar
[14] Nan Y G, Wang C, Peng G D, Guo T, Xie W P, Min L, Cai S S, Ni J S, Yi J, Luo X Y, Wang K, Nie M 2020 IEEE Trans. Instrum. Meas. 69 268Google Scholar
[15] Jaharudin N A N, Cholan N A, Omar M A, Talib R, Ngajikin N H 2020 Laser Phys. 30 015101Google Scholar
[16] Liao S L, Wong T 2019 IEEE Sens. J. 19 12016Google Scholar
[17] Bai Y, Yan F P, Feng T, Han W G, Zhang L N, Cheng D, Bai Z Y, Wen X D 2019 Opt. Fiber Technol. 51 71Google Scholar
[18] Liu G G, ZhuY P, Liu Z G, Han M 2019 Opt. Lett. 44 2756Google Scholar
[19] 宋丽军, 张鹏飞, 王鑫, 王晨曦, 李刚, 张天才 2019 物理学报 68 074204Google Scholar
Song L J, Zhang P F, Wang X, Wang C X, Li G, Zhang T C 2019 Acta Phys. Sin. 68 074204Google Scholar
[20] Guo Y, Liu S J, Ni Y, Wu H D, Chen, X F 2019 Opt. Express 27 11776Google Scholar
-
-
[1] Liu Y, Qin Q, Liu H H, Tan Z W, Wang M G 2018 Opt. Fiber Technol. 46 48Google Scholar
[2] Xu Y L, Zhang X H, Zhu S Y, Zhan S 2016 Sci. Bull. 61 313Google Scholar
[3] Yang Chen, Oyadiji S O 2016 Sens. Actuator A-Phys. 244 1Google Scholar
[4] Yamaguchi T, Endo W, Shinoda Y 2019 IEEE Sens. J. 19 10519Google Scholar
[5] Tanaka Y, Furukawa O, Tsuchiya K 2018 Appl. Phys. Express 11 112501Google Scholar
[6] Guo T, Liu F, Guan B O, Albert J 2016 Opt. Laser Technol. 78 19Google Scholar
[7] Ahmad H, Aidit S N, Ooi S I, Tiu Z C 2018 IEEE Sens. J. 18 8275Google Scholar
[8] Kim H H, Choi S J, Jeon K S, Pan J K 2016 Sensors 16 1Google Scholar
[9] Kisala P, Harasim D, Mroczka J 2016 Opt. Express 24 29922Google Scholar
[10] Huang B S, Xiong S S, Chen Z S, Zhu S F, Zhang H, Huang X C, Feng Y H, Gao S C, Chen S, Liu W P, Li Z H 2019 IEEE Sens. J. 19 5632Google Scholar
[11] Liu Z G, Zhang X P, Gong Z F, Zhang Y, Peng W 2016 IEEE Photonics Technol. Lett. 28 1723Google Scholar
[12] Huang L, Liu S J, Liu R Z, Guo Y, Chen X F 2018 IEEE Photonics Technol. Lett. 30 1621Google Scholar
[13] Enriquez-Gomeze L E, Guerrero-Viramontes J A, Martinez-Rios A, Salceda-Delgadoe G, Toral-Acosta D, Porraz-Culebro T E, Selvas-Aguilar R, Madrazo-de-Rosa K, Anzueto-Sanchez G 2020 IEEE Photonics Technol. Lett. 32 93Google Scholar
[14] Nan Y G, Wang C, Peng G D, Guo T, Xie W P, Min L, Cai S S, Ni J S, Yi J, Luo X Y, Wang K, Nie M 2020 IEEE Trans. Instrum. Meas. 69 268Google Scholar
[15] Jaharudin N A N, Cholan N A, Omar M A, Talib R, Ngajikin N H 2020 Laser Phys. 30 015101Google Scholar
[16] Liao S L, Wong T 2019 IEEE Sens. J. 19 12016Google Scholar
[17] Bai Y, Yan F P, Feng T, Han W G, Zhang L N, Cheng D, Bai Z Y, Wen X D 2019 Opt. Fiber Technol. 51 71Google Scholar
[18] Liu G G, ZhuY P, Liu Z G, Han M 2019 Opt. Lett. 44 2756Google Scholar
[19] 宋丽军, 张鹏飞, 王鑫, 王晨曦, 李刚, 张天才 2019 物理学报 68 074204Google Scholar
Song L J, Zhang P F, Wang X, Wang C X, Li G, Zhang T C 2019 Acta Phys. Sin. 68 074204Google Scholar
[20] Guo Y, Liu S J, Ni Y, Wu H D, Chen, X F 2019 Opt. Express 27 11776Google Scholar
计量
- 文章访问数: 6856
- PDF下载量: 71
- 被引次数: 0