搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单模热致超大模场掺镱光纤放大器的数值研究

曹涧秋 刘文博 陈金宝 陆启生

引用本文:
Citation:

单模热致超大模场掺镱光纤放大器的数值研究

曹涧秋, 刘文博, 陈金宝, 陆启生

Modeling the single-mode thermally guiding very-large-mode-area Yb-doped fiber amplifier

Cao Jian-Qiu, Liu Wen-Bo, Chen Jin-Bao, Lu Qi-Sheng
PDF
导出引用
  • 非线性效应是限制光纤激光器功率提升的重要限制因素,而超大模场光纤对于非线性效应的抑制具有重要意义.热致超大模场光纤是一种新型超大模场光纤,其利用热透镜效应实现低数值孔径波导结构,从而在保证光束质量的前提下实现超大模场输出.不过,现阶段对于热致超大模场光纤激光器的研究较为有限.本文提出了单模超大模场掺镱光纤放大器的速率方程模型,该模型由稳态速率方程和热传导方程组成.利用该模型,对前向抽运单模热致超大模场光纤放大器进行了数值研究.研究表明:信号光模场直径随着信号光功率的增加而增加,这体现了热致超大模场光纤在非线性效应抑制方面的优势.研究还揭示了最佳光纤长度及其产生的物理机制,发现最佳光纤长度与注入抽运光功率有关,其随着注入抽运光功率的增加而减小;不过,当注入抽运光功率足够大时,最佳光纤长度随注入抽运光功率变化不大.此外,还对输出光场的模式进行了探讨,验证了其在保证超大模场输出的同时,实现高斜率效率输出的可行性.相关研究对于热致超大模场光纤放大器的设计具有指导意义.
    The very-large-mode-area (VLMA) fiber is of great importance for suppressing the nonlinear effects which are considered as main limitations to the power scaling-up of high-power fiber lasers and amplifiers. The thermally guiding (TG) VLMA fiber is a novel VLMA fiber, the waveguide of which is formed by the thermal lens effect. Then, a low numerical aperture can be realized, which is promising to achieve the expanding of mode area with a high-quality beam. In order to study the performance of TG VLMA fiber in a fiber amplifier, we present a rate-equation model of the single-mode ytterbium-doped TG VLMA fiber amplifier, which consists of the steady-state rate equations and thermal transferring equations. With this model, the forward-pumped single-mode TG VLMA fiber amplifier is numerically studied. It is found that the diameter of fundamental mode field rises with the increase of the signal power, which shows the superiority of the TG VLMA fiber in suppressing the nonlinear effect in the fiber amplifier. The optimum fiber length and pertinent physical mechanism are also investigated. It is revealed the optimum fiber length is related to the input pump power, and it decreases with the increase of input pump power. However, when the input pump power is large enough, such a variation of optimum fiber length will become weakened. The numerical results also illuminate that the thermal load at the optimum length of TG VLMA fiber should not change too much with the input pump power. Moreover, the mode of output optical field is also discussed. It is found that the thermal load at the optimum length may not be large enough to realize a core-confined mode. In order to ensure that the core-confined mode can be output, the thermal load at the end of the fiber amplifier should be larger. It requires that the fiber length used in the amplifier should be shorter than the optimum fiber length, which will induce the decrease of the output signal power to some extent. In spite of that, the numerical results reveal that the decrease of output signal power should not be much, and the pertinent slope efficiency is not obviously lowered, either. Thus, it is verified that the core-confined mode with a VLMA can be obtained from the TG VLMA fiber amplifier with high slope efficiency. The pertinent results have significant guidance in the design of TG VLMA fiber amplifier.
      通信作者: 陈金宝, kdchenjinbao@aliyun.com
    • 基金项目: 国家自然科学基金(批准号:61405249)资助的课题.
      Corresponding author: Chen Jin-Bao, kdchenjinbao@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61405249).
    [1]

    Nilsson J, Payne D 2011 Science 332 921

    [2]

    Lou Q H, Zhou J, Zhu J Q, Wang Z J 2006 Infrared Laser Eng. 35 135 (in Chinese) [楼祺洪, 周军, 朱健强, 王之江 2006 红外与激光工程 35 135]

    [3]

    Limpert J, Rser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, Tnnermann A 2007 J. Sel. Top. Quantum Electron. 13 537

    [4]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [5]

    Tnnermann A, Schreiber T, Limpert J 2010 Appl. Opt. 49 71

    [6]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C P J 2008 Opt. Express 16 13240

    [7]

    Cao J, Guo S, Xu X, Chen J, Lu Q 2014 J. Sel. Top. Quantum Electron. 20 0903211

    [8]

    Liao S Y, Gong M L 2011 Infrared Laser Eng. 40 455 (in Chinese) [廖素英, 巩马理 2011 红外与激光工程 40 455]

    [9]

    Tsuchida Y, Saitoh K, Koshiba M 2007 Opt. Express 15 1794

    [10]

    Iizawa K, Varshney S K, Tsuchida Y, Saitoh K, Koshiba M 2008 Opt. Express 16 579

    [11]

    Limpert J, Schmidt O, Rothhardt J, Rser F, Schreiber T, Tnnermann A, Ermeneux S, Yvernault P, Salin F 2006 Opt. Express 14 2715

    [12]

    Stutzki F, Jansen F, Eidam T, Steinmetz A, Jauregui C, Limpert J, Tnnermann A 2011 Opt. Lett. 36 689

    [13]

    Siegman A E, Chen Y, Sudesh V, Richardson M C, Bass M, Foy P, Hawkins W, Ballato J 2006 Appl. Phys. Lett. 89 251101

    [14]

    Siegman A E 2007 J. Opt. Soc. Am. B 24 1677

    [15]

    Chen Y, McComb T, Sudesh V, Richardson M, Bass M 2007 Opt. Lett. 32 2505

    [16]

    Liu C H, Chang G, Litchinister N, Galvanauskas A, Guertin D, Jacobson N, Tankala K 2007 Optical Society of America, Advanced Solid-State Photonics Vancouver, Canada, January, 2007 pME2

    [17]

    Chen H W, Sosnowski T, Liu C H, Chen L J, Birge J R, Galvanauskas A, Krtner F X, Chang G 2010 Opt. Express 18 24699

    [18]

    Wong W S, X Peng, McLaughlin J M, Dong L 2005 Opt. Lett. 30 2855

    [19]

    Dong L, Li J, Peng X 2006 Opt. Express 14 11512

    [20]

    Dong L, Peng X, Li J 2007 J. Opt. Soc. Am. B 24 1689

    [21]

    Jain D, Baskiotis C, Sahu J K 2013 Opt. Express 21 1448

    [22]

    Jansen F, Stutzki F, Otto H, Jauregui C, Limper J, Tnnermann A 2013 Opt. Lett. 38 510

    [23]

    Kong L, Cao J, Guo S, Jiang Z, Lu Q 2016 Appl. Opt. 55 1183

    [24]

    Hardy A, Oron R 1997 J. Quantum Electron. 33 307

    [25]

    Kelson I, Hardy A 1998 J. Quantum Electron. 34 1570

    [26]

    Rosa L, Coscelli E, Poli F, Cucinotta A, Selleri S 2015 Opt. Express 23 18638

    [27]

    Brown D C, Hoffman H J 2001 J. Quantum Electron. 37 207

    [28]

    Fan Y, He B, Zhou J, Zheng J, Liu H, Wei Y, Dong J, Lou Q 2011 Opt. Express 19 15162

    [29]

    Coscelli E, Poli F, Thomas T A, Jrgensen M M, Leick L, Broeng J, Cucinotta A, Selleri S 2012 J. Lightwave Technology 30 3494

    [30]

    Paschotta R, Nilsson J, Tropper A, Hanna D 1997 J. Quantum Electron. 33 1049

  • [1]

    Nilsson J, Payne D 2011 Science 332 921

    [2]

    Lou Q H, Zhou J, Zhu J Q, Wang Z J 2006 Infrared Laser Eng. 35 135 (in Chinese) [楼祺洪, 周军, 朱健强, 王之江 2006 红外与激光工程 35 135]

    [3]

    Limpert J, Rser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, Tnnermann A 2007 J. Sel. Top. Quantum Electron. 13 537

    [4]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [5]

    Tnnermann A, Schreiber T, Limpert J 2010 Appl. Opt. 49 71

    [6]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C P J 2008 Opt. Express 16 13240

    [7]

    Cao J, Guo S, Xu X, Chen J, Lu Q 2014 J. Sel. Top. Quantum Electron. 20 0903211

    [8]

    Liao S Y, Gong M L 2011 Infrared Laser Eng. 40 455 (in Chinese) [廖素英, 巩马理 2011 红外与激光工程 40 455]

    [9]

    Tsuchida Y, Saitoh K, Koshiba M 2007 Opt. Express 15 1794

    [10]

    Iizawa K, Varshney S K, Tsuchida Y, Saitoh K, Koshiba M 2008 Opt. Express 16 579

    [11]

    Limpert J, Schmidt O, Rothhardt J, Rser F, Schreiber T, Tnnermann A, Ermeneux S, Yvernault P, Salin F 2006 Opt. Express 14 2715

    [12]

    Stutzki F, Jansen F, Eidam T, Steinmetz A, Jauregui C, Limpert J, Tnnermann A 2011 Opt. Lett. 36 689

    [13]

    Siegman A E, Chen Y, Sudesh V, Richardson M C, Bass M, Foy P, Hawkins W, Ballato J 2006 Appl. Phys. Lett. 89 251101

    [14]

    Siegman A E 2007 J. Opt. Soc. Am. B 24 1677

    [15]

    Chen Y, McComb T, Sudesh V, Richardson M, Bass M 2007 Opt. Lett. 32 2505

    [16]

    Liu C H, Chang G, Litchinister N, Galvanauskas A, Guertin D, Jacobson N, Tankala K 2007 Optical Society of America, Advanced Solid-State Photonics Vancouver, Canada, January, 2007 pME2

    [17]

    Chen H W, Sosnowski T, Liu C H, Chen L J, Birge J R, Galvanauskas A, Krtner F X, Chang G 2010 Opt. Express 18 24699

    [18]

    Wong W S, X Peng, McLaughlin J M, Dong L 2005 Opt. Lett. 30 2855

    [19]

    Dong L, Li J, Peng X 2006 Opt. Express 14 11512

    [20]

    Dong L, Peng X, Li J 2007 J. Opt. Soc. Am. B 24 1689

    [21]

    Jain D, Baskiotis C, Sahu J K 2013 Opt. Express 21 1448

    [22]

    Jansen F, Stutzki F, Otto H, Jauregui C, Limper J, Tnnermann A 2013 Opt. Lett. 38 510

    [23]

    Kong L, Cao J, Guo S, Jiang Z, Lu Q 2016 Appl. Opt. 55 1183

    [24]

    Hardy A, Oron R 1997 J. Quantum Electron. 33 307

    [25]

    Kelson I, Hardy A 1998 J. Quantum Electron. 34 1570

    [26]

    Rosa L, Coscelli E, Poli F, Cucinotta A, Selleri S 2015 Opt. Express 23 18638

    [27]

    Brown D C, Hoffman H J 2001 J. Quantum Electron. 37 207

    [28]

    Fan Y, He B, Zhou J, Zheng J, Liu H, Wei Y, Dong J, Lou Q 2011 Opt. Express 19 15162

    [29]

    Coscelli E, Poli F, Thomas T A, Jrgensen M M, Leick L, Broeng J, Cucinotta A, Selleri S 2012 J. Lightwave Technology 30 3494

    [30]

    Paschotta R, Nilsson J, Tropper A, Hanna D 1997 J. Quantum Electron. 33 1049

  • [1] 曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝. 辐照效应对于掺镱光纤放大器模式不稳定阈值影响的理论研究. 物理学报, 2024, 73(20): 204202. doi: 10.7498/aps.73.20240816
    [2] 赵卫, 付士杰, 盛泉, 薛凯, 史伟, 姚建铨. 辅助光对高功率掺镱光纤激光放大器受激拉曼散射效应的抑制作用. 物理学报, 2024, 73(20): 204201. doi: 10.7498/aps.73.20240895
    [3] 林贤峰, 张志伦, 邢颍滨, 陈瑰, 廖雷, 彭景刚, 李海清, 戴能利, 李进延. 基于M型掺镱光纤的近单模2 kW光纤放大器. 物理学报, 2022, 71(3): 034205. doi: 10.7498/aps.71.20211751
    [4] 林贤峰, 张志伦, 邢颍滨, 陈瑰, 廖雷, 彭景刚, 李海清, 戴能利, 李进延. 基于M型掺镱光纤的近单模2 kW光纤放大器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211751
    [5] 刘恒, 张钧翔, 付士杰, 盛泉, 史伟, 姚建铨. 有源光纤中稀土离子激光上能级寿命测量的研究. 物理学报, 2019, 68(22): 224202. doi: 10.7498/aps.68.20190616
    [6] 罗亿, 王小林, 张汉伟, 粟荣涛, 马鹏飞, 周朴, 姜宗福. 光纤放大器放大自发辐射特性与高温易损点位置. 物理学报, 2017, 66(23): 234206. doi: 10.7498/aps.66.234206
    [7] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [8] 刘江, 刘晨, 师红星, 王璞. 342W全光纤结构窄线宽连续掺铥光纤激光器. 物理学报, 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [9] 刘江, 刘晨, 师红星, 王璞. 203W全光纤全保偏结构皮秒掺铥光纤激光器. 物理学报, 2016, 65(19): 194208. doi: 10.7498/aps.65.194208
    [10] 董繁龙, 葛廷武, 张雪霞, 谭祺瑞, 王智勇. 300 W侧面分布式抽运掺Yb全光纤放大器. 物理学报, 2015, 64(8): 084205. doi: 10.7498/aps.64.084205
    [11] 姜曼, 肖虎, 周朴, 王小林, 刘泽金. 高功率、低量子亏损同带抽运掺镱光纤放大器. 物理学报, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [12] 杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏. 增益竞争双波长放大单频光纤放大器理论研究. 物理学报, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [13] 肖虎, 冷进勇, 吴武明, 王小林, 马阎星, 周朴, 许晓军, 赵国民. 同带抽运高效率光纤放大器. 物理学报, 2011, 60(12): 124207. doi: 10.7498/aps.60.124207
    [14] 杨若夫, 杨平, 沈锋. 基于能动分块反射镜的两路光纤放大器相位探测及其相干合成实验研究. 物理学报, 2009, 58(12): 8297-8301. doi: 10.7498/aps.58.8297
    [15] 任广军, 魏臻, 张强, 姚建铨. 掺钕保偏光纤放大器的研究. 物理学报, 2009, 58(6): 3897-3902. doi: 10.7498/aps.58.3897
    [16] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究. 物理学报, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [17] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [18] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究. 物理学报, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [19] 肖 瑞, 侯 静, 姜宗福, 刘 明. 三路光纤放大器相干合成技术的实验研究. 物理学报, 2006, 55(12): 6464-6469. doi: 10.7498/aps.55.6464
    [20] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器. 物理学报, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
计量
  • 文章访问数:  6429
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-25
  • 修回日期:  2016-11-08
  • 刊出日期:  2017-03-05

/

返回文章
返回