搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤放大器放大自发辐射特性与高温易损点位置

罗亿 王小林 张汉伟 粟荣涛 马鹏飞 周朴 姜宗福

引用本文:
Citation:

光纤放大器放大自发辐射特性与高温易损点位置

罗亿, 王小林, 张汉伟, 粟荣涛, 马鹏飞, 周朴, 姜宗福

Amplified spontaneous emission characteristics and locations of high temperature vulnerable point in fiber amplifiers

Luo Yi, Wang Xiao-Lin, Zhang Han-Wei, Su Rong-Tao, Ma Peng-Fei, Zhou Pu, Jiang Zong-Fu
PDF
导出引用
  • 在高功率光纤放大器实验中,时常发现增益光纤抽运注入熔接点后10–50 cm处容易发生光纤烧毁现象.为了对该现象进行理论预测,基于光纤激光器速率方程模型和增益光纤的热传导模型,从种子功率、抽运功率和抽运吸收三个方面对掺镱双包层光纤放大器中的放大自发辐射(ASE)和温度特性进行研究.结果表明,在放大倍率较高、ASE较为严重等情况下,光纤放大器中的最高温度点一般不在抽运注入的熔接点处,而在距离熔接点10–50 cm处,与实验中发现光纤烧毁的位置基本符合.从光纤放大器的ASE抑制、最高温度点温度控制角度出发,对光纤放大器在种子功率、抽运功率、抽运吸收、放大倍率和抽运波长等方面的设计给出了指导性的建议.
    Master oscillator power amplifier (MOPA) is a common configuration in fiber lasers to obtain high power output. Amplified spontaneous emission (ASE) is amplified stage by stage by MOPA, which may result in damage to the fiber amplifier. In the experiment of high-power fiber amplifier, thermal effect is one of the most critical issues. High temperature from significant thermal effect would restrict the further improvement of laser power and cause the fiber to damage. In most of the experiments, the gain fibers are broken usually at the place 10-50 cm away from the fused point of the pump injection end. To better understand in physics the highest temperature and the position of the burning point, we study the ASE and temperature characteristics by using the rate equation model of fiber laser and the thermal conduction model of gain fiber. We analyze the influences of seed power, pump power and pump absorption on Yb-doped double-cladding fiber amplifier. The results show that when magnification is relatively high and ASE is serious, the highest temperature point of the fiber amplifier is not at the fused point of the pump injection end but at the place 10-50 cm away from the fused point, which consists well with the experimental result. For studying the ASE suppression and the temperature control of the hottest point, we compare the three parameters in the 915 nm pumped case with those in the 975 nm pumped case, these being power ratio of ASE to the output laser, hottest location along the fiber, and the ratio of the temperature difference between the highest temperature and fusion point temperature to the latter one. It is concluded that the optimal parameters for the 915 nm pumped case are seed power larger than 7 W, pump power less than 1250 W, and pump absorption less than 20 dB. As to the 975 nm pumped case, it is suggested that the seed power should be not less than 8 W with an appropriate pump power. The research also implies that a better performance of fiber amplifier is pumped by 975 nm under the same condition. To prevent the local internal hot point from forming and the potential burnout risk from happening, the magnification of fiber amplifier needs to be set below 50-fold. In conclusion, this work presents a suggestion for optimizing the fiber amplifier design through using appropriate seed power, pump power, pump absorption, magnification and pump wavelength.
      Corresponding author: Wang Xiao-Lin, chinawxllin@163.com;jiangzongfu7@163.com ; Jiang Zong-Fu, chinawxllin@163.com;jiangzongfu7@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61505260, 61735007).
    [1]

    Liem A, Limpert J, Zellmer H 2003 Opt Lett. 28 1537

    [2]

    Jeong Y, Nilsson J, Sahu J K 2005 Opt. Lett. 30 459

    [3]

    Sintov Y, Y G, Koplowitch T, Wang B 2008 Opt. Commun. 281 1162

    [4]

    Han Q, Ning J P, Zhou L, Zhang W Y, Chen Z 2009 Laser Technol. 33 541 (in Chinese)[韩群, 宁继平, 周雷, 张伟毅, 陈琤 2009 激光技术 33 541]

    [5]

    Fan Y Y, He B, Zhou J, Zheng J T, Liu H K, Wei Y R, Dong J X, Lou Q H 2011 Opt. Express 19 15162

    [6]

    Zhang S, Wang X 2013 Opt. Commun. 295 155

    [7]

    Lapointe M A, Chatigny S, Piché M, Cain-Skaff M, Maran J N 2009 Proc. SPIE 7195 719511

    [8]

    Chen Z L, Hou J, Jiang Z F 2007 Laser Technol. 5 544 (in Chinese)[陈子伦, 侯静, 姜宗福 2007 激光技术 5 544]

    [9]

    Kelson I, Hardy A 1998 IEEE J. Quantum Elect. 34 1570

    [10]

    Kelson I, Hardy A 1999 J. Lightwave Technol. 17 891

    [11]

    Wang X L, Tao R M, Zhang H W, Zhou P, Xu X J (in Chinese)[王小林, 陶汝茂, 张汉伟, 周朴, 许晓军 2014 中国激光 11 119]

    [12]

    Xiong Y 2006 M. S. Dissertation (Chengdu:Southwest Jiaotong University) (in Chinese)[熊悦 2006 硕士学位论文 (成都:西南交通大学)]

    [13]

    Brown D C, Hoffman H J 2001 IEEE J. Quantum Elect. 37 207

    [14]

    Smith A V, Smith J J 2013 Opt. Express 21 2606

    [15]

    Maxim B, Paul W, Nicholas C 2000 J. Lightwave Technol. 18 1533

    [16]

    Yoshito S, Shuichi Y, Shuichiro A, Masaru K, Ryo N 2003 J. Lightwave Technol. 21 2511

    [17]

    Xiao H 2012 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[肖虎 2012 博士学位论文 (长沙:国防科学技术大学)]

    [18]

    Zhao Z Y, Duan K Q, Wang J M, Zhao W, Wang Q S 2008 Acta Phys. Sin. 57 6335 (in Chinese)[赵振宇, 段开椋, 王建明, 赵卫, 王屹山 2008 物理学报 57 6335]

  • [1]

    Liem A, Limpert J, Zellmer H 2003 Opt Lett. 28 1537

    [2]

    Jeong Y, Nilsson J, Sahu J K 2005 Opt. Lett. 30 459

    [3]

    Sintov Y, Y G, Koplowitch T, Wang B 2008 Opt. Commun. 281 1162

    [4]

    Han Q, Ning J P, Zhou L, Zhang W Y, Chen Z 2009 Laser Technol. 33 541 (in Chinese)[韩群, 宁继平, 周雷, 张伟毅, 陈琤 2009 激光技术 33 541]

    [5]

    Fan Y Y, He B, Zhou J, Zheng J T, Liu H K, Wei Y R, Dong J X, Lou Q H 2011 Opt. Express 19 15162

    [6]

    Zhang S, Wang X 2013 Opt. Commun. 295 155

    [7]

    Lapointe M A, Chatigny S, Piché M, Cain-Skaff M, Maran J N 2009 Proc. SPIE 7195 719511

    [8]

    Chen Z L, Hou J, Jiang Z F 2007 Laser Technol. 5 544 (in Chinese)[陈子伦, 侯静, 姜宗福 2007 激光技术 5 544]

    [9]

    Kelson I, Hardy A 1998 IEEE J. Quantum Elect. 34 1570

    [10]

    Kelson I, Hardy A 1999 J. Lightwave Technol. 17 891

    [11]

    Wang X L, Tao R M, Zhang H W, Zhou P, Xu X J (in Chinese)[王小林, 陶汝茂, 张汉伟, 周朴, 许晓军 2014 中国激光 11 119]

    [12]

    Xiong Y 2006 M. S. Dissertation (Chengdu:Southwest Jiaotong University) (in Chinese)[熊悦 2006 硕士学位论文 (成都:西南交通大学)]

    [13]

    Brown D C, Hoffman H J 2001 IEEE J. Quantum Elect. 37 207

    [14]

    Smith A V, Smith J J 2013 Opt. Express 21 2606

    [15]

    Maxim B, Paul W, Nicholas C 2000 J. Lightwave Technol. 18 1533

    [16]

    Yoshito S, Shuichi Y, Shuichiro A, Masaru K, Ryo N 2003 J. Lightwave Technol. 21 2511

    [17]

    Xiao H 2012 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[肖虎 2012 博士学位论文 (长沙:国防科学技术大学)]

    [18]

    Zhao Z Y, Duan K Q, Wang J M, Zhao W, Wang Q S 2008 Acta Phys. Sin. 57 6335 (in Chinese)[赵振宇, 段开椋, 王建明, 赵卫, 王屹山 2008 物理学报 57 6335]

  • [1] 林贤峰, 张志伦, 邢颍滨, 陈瑰, 廖雷, 彭景刚, 李海清, 戴能利, 李进延. 基于M型掺镱光纤的近单模2 kW光纤放大器. 物理学报, 2022, 71(3): 034205. doi: 10.7498/aps.71.20211751
    [2] 林贤峰, 张志伦, 邢颍滨, 陈瑰, 廖雷, 彭景刚, 李海清, 戴能利, 李进延. 基于M型掺镱光纤的近单模2 kW光纤放大器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211751
    [3] 方龙, 陈国定. 冷液滴/热液池碰撞混合及温度特性. 物理学报, 2019, 68(23): 234702. doi: 10.7498/aps.68.20190809
    [4] 曹涧秋, 刘文博, 陈金宝, 陆启生. 单模热致超大模场掺镱光纤放大器的数值研究. 物理学报, 2017, 66(6): 064201. doi: 10.7498/aps.66.064201
    [5] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [6] 刘鹏, 廖雷, 褚应波, 王一礴, 胡雄伟, 彭景刚, 李进延, 戴能利. 掺Bi石英光纤的射线辐照和温度影响特性. 物理学报, 2015, 64(22): 224220. doi: 10.7498/aps.64.224220
    [7] 董繁龙, 葛廷武, 张雪霞, 谭祺瑞, 王智勇. 300 W侧面分布式抽运掺Yb全光纤放大器. 物理学报, 2015, 64(8): 084205. doi: 10.7498/aps.64.084205
    [8] 陶汝茂, 周朴, 王小林, 司磊, 刘泽金. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究. 物理学报, 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [9] 王思佳, 顾澄琳, 刘博文, 宋有建, 钱程, 胡明列, 柴路, 王清月. 利用非线性脉冲预整形实现脉冲快速自相似放大 . 物理学报, 2013, 62(14): 140601. doi: 10.7498/aps.62.140601
    [10] 姜曼, 肖虎, 周朴, 王小林, 刘泽金. 高功率、低量子亏损同带抽运掺镱光纤放大器. 物理学报, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [11] 杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏. 增益竞争双波长放大单频光纤放大器理论研究 . 物理学报, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [12] 肖虎, 冷进勇, 吴武明, 王小林, 马阎星, 周朴, 许晓军, 赵国民. 同带抽运高效率光纤放大器. 物理学报, 2011, 60(12): 124207. doi: 10.7498/aps.60.124207
    [13] 杨若夫, 杨平, 沈锋. 基于能动分块反射镜的两路光纤放大器相位探测及其相干合成实验研究. 物理学报, 2009, 58(12): 8297-8301. doi: 10.7498/aps.58.8297
    [14] 任广军, 魏臻, 张强, 姚建铨. 掺钕保偏光纤放大器的研究. 物理学报, 2009, 58(6): 3897-3902. doi: 10.7498/aps.58.3897
    [15] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究. 物理学报, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [16] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [17] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究. 物理学报, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [18] 郑 凯, 常德远, 傅永军, 魏 淮, 延凤平, 简 伟, 简水生. 掺铒孔辅助导光光纤的特性研究与优化设计. 物理学报, 2007, 56(2): 958-967. doi: 10.7498/aps.56.958
    [19] 肖 瑞, 侯 静, 姜宗福, 刘 明. 三路光纤放大器相干合成技术的实验研究. 物理学报, 2006, 55(12): 6464-6469. doi: 10.7498/aps.55.6464
    [20] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器. 物理学报, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
计量
  • 文章访问数:  3759
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-27
  • 修回日期:  2017-07-18
  • 刊出日期:  2017-12-05

光纤放大器放大自发辐射特性与高温易损点位置

    基金项目: 国家自然科学基金(批准号:61505260,61735007)资助的课题.

摘要: 在高功率光纤放大器实验中,时常发现增益光纤抽运注入熔接点后10–50 cm处容易发生光纤烧毁现象.为了对该现象进行理论预测,基于光纤激光器速率方程模型和增益光纤的热传导模型,从种子功率、抽运功率和抽运吸收三个方面对掺镱双包层光纤放大器中的放大自发辐射(ASE)和温度特性进行研究.结果表明,在放大倍率较高、ASE较为严重等情况下,光纤放大器中的最高温度点一般不在抽运注入的熔接点处,而在距离熔接点10–50 cm处,与实验中发现光纤烧毁的位置基本符合.从光纤放大器的ASE抑制、最高温度点温度控制角度出发,对光纤放大器在种子功率、抽运功率、抽运吸收、放大倍率和抽运波长等方面的设计给出了指导性的建议.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回