搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面材料PFN-Br的光放大性质及其在电泵浦有机激光中的应用潜力

张志远 肖子晗 邾珊 张琪 夏瑞东 彭俊彪

引用本文:
Citation:

界面材料PFN-Br的光放大性质及其在电泵浦有机激光中的应用潜力

张志远, 肖子晗, 邾珊, 张琪, 夏瑞东, 彭俊彪

Optical gain properties of interfacial material PFN-Br and its application potentials in future electrically pumped organic lasers

Zhang Zhi-Yuan, Xiao Zi-Han, Zhu Shan, Zhang Qi, Xia Rui-Dong, Peng Jun-Biao
PDF
HTML
导出引用
  • 系统研究了水/醇溶性共轭聚电解质Poly[(9, 9-bis(3′-((N, N-dimethyl)-N-ethylammonium)-propyl)-2, 7-fluorene)-alt-2, 7-(9, 9-dioctylfluorene)]dibromide(PFN-Br)的光放大性质, 发现其具有较小的放大自发辐射(ASE)阈值(~11 μJ/cm2)和ASE截止厚度(<50 nm), 是一种高效的蓝光(~456 nm)增益介质. 利用其对于有机溶剂的良好耐性, 如甲苯等, 分别在石英和ITO玻璃基底上制备了PFN-Br/F8BT以及PFN-Br/MEH-PPV双层器件. 经过研究发现, PFN-Br界面层不会明显增加系统损耗并影响上层F8BT的光增益. 然而, 在ITO玻璃基底上, 通过引入PFN-Br界面层, 减少了ITO电极对MEH-PPV增益介质损耗, 显著地降低了其ASE阈值(相比于没有PFN-Br界面降低约60%). 这些发现说明了PFN-Br本身具备良好的增益性能, 同时也是成熟的载流子传输界面功能材料, 在有机激光领域应用前景十分广泛.
    In this paper, the optical gain properties of the water/alcohol soluble conjugated polyelectrolyte (Poly[(9,9-bis(3′-((N,N-dimethyl)-N-ethylammonium)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]) (PFN-Br) and its potential applications in future electrically pumped organic lasers are revealed and systematically studied. To the best of our knowledge, no studies on the optical gain properties of PFN-Br or its prototype, poly[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] have been reported before. These conjugated polyelectrolytes are widely used as the interlayers in organic light emitting diodes or organic solar cells. The thickness of such an interlayer is usually less than 10 nm, which is considered not sufficient for supporting light waveguiding. Therefore, the thickness of the PFN-Br layer used in this work is increased to more than 100 nm. Through careful study, the polymer is found to possess a low threshold of amplified spontaneous emission (ASE) (~11 μJ/cm2) and a small ASE cutoff thickness (<50 nm). It is an efficient blue emission (~456 nm) gain medium. The ASE peak of the PFN-Br film is red-shifted as the thickness increases from 50 to 220 nm. By utilizing the great resistance of PFN-Br against the organic solvent, such as toluene, PFN-Br/F8BT bilayer devices on quartz and PFN-Br/MEH-PPV bilayer devices on ITO glass are fabricated and characterized. In the PFN-Br/F8BT bilayer devices, it is found that the PFN-Br interlayer has very limited influence on F8BT. The ASE threshold of F8BT increases only twice, compared with that of F8BT monolayer device, when 100-nm-thick PFN-Br layer is introduced beneath the F8BT film. No significant change in optical gain or loss is observed. Most of the extra losses in F8BT due to the introduction of PFN-Br are attributed to the larger refractive index of PFN-Br than that of quartz substrate. Furthermore, in the PFN-Br/MEH-PPV bilayer devices on ITO glass, introducing PFN-Br interlayer resulting in optimal ASE performance of MEH-PPV compared with that on bare ITO surface. The ASE threshold of MEH-PPV is reduced as much as 60% (from 402 μJ/cm2 to 160 μJ/cm2) while the PFN-Br layer is sandwiched between ITO and MEH-PPV. The PFN-Br layer modifies the waveguiding modes, and reduces the interaction between excitons and ITO electrodes. As a result, the ASE performance of MEH-PPV is improved. The findings of this report indicate that the PFN-Br is not only a good carrier transport material but also a highly-efficient gain medium. PFN-Br, combined with its advantages in different fields, is expected to play various roles in future organic electrically pumped lasers.
      通信作者: 张琪, zq890531@163.com ; 夏瑞东, iamrdxia@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 22090024, 61874058)资助的课题.
      Corresponding author: Zhang Qi, zq890531@163.com ; Xia Rui-Dong, iamrdxia@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 22090024, 61874058).
    [1]

    Chenais S, Forget S 2012 Polym. Int. 61 390Google Scholar

    [2]

    Yap B K, Xia R D, Campoy-Quiles M, Stavrinou P N, Bradley D D C 2008 Nat. Mater. 7 376Google Scholar

    [3]

    Kim H, Schulte N, Zhou G, Mullen K, Laquai F 2011 Adv. Mater. 23 894Google Scholar

    [4]

    Feng Z J, Cheng Z, Jin H X, Lu P 2022 J. Mater. Chem. C Mater. 10 4497Google Scholar

    [5]

    Sarma M, Chen L M, Chen Y S, Wong K T 2022 Mater. Sci. Eng. R Rep. 150 100689Google Scholar

    [6]

    Al-Azzawi A G S, Aziz S B, Dannoun E M A, Iraqi A, Nofal M M, Murad A R, Hussein A M 2023 Polymers 15 164Google Scholar

    [7]

    Li B, Yang X, Li S Y, Yuan J Y 2023 Energy Environ. Sci. 16 723Google Scholar

    [8]

    Wang J J, Wen S G, Hu J, Han J H, Yang C P, Li J F, Bao X C, Yan S K 2022 Chem. Eng. J. 452 139462Google Scholar

    [9]

    Yazdani S A, Mikaeili A, Bencheikh F, Adachi C 2022 Jpn. J. Appl. Phys. 61 074003Google Scholar

    [10]

    Zhang Q, Tao W W, Huang J S, Xia R D, Cabanillas-Gonzalez J 2021 Adv. Photonics. Res. 2 2000155Google Scholar

    [11]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photonics 6 591Google Scholar

    [12]

    Zhao Y Y, Zhang Q W, Liu Y F, Lv C, Guo S, Liu X P, Bi Y G, Li H W, Wu Y Q 2022 Org. Electron. 109 106620Google Scholar

    [13]

    Feng C, Wang X J, He Z C, Cao Y 2021 Sol. RRL 5 2000753Google Scholar

    [14]

    Hsu F C, Lin Y A, Li C P 2021 Org. Electron. 89 106008Google Scholar

    [15]

    Li M Q, Jiang J X, Ning Y J, Zhao S L, Masri W F A, Wageh S, Al-Ghamdi A 2022 Synth. Met. 289 117122Google Scholar

    [16]

    Hu Z C, Zhang K, Huang F, Cao Y 2015 Chem. Commun. 51 5572Google Scholar

    [17]

    Huang F, Wu H B, Wang D, Yang W, Cao Y 2004 Chem. Mater. 16 708Google Scholar

    [18]

    Wu H B, Huang F, Mo Y Q, Yang W, Wang D L Peng J B, Cao Y 2004 Adv. Mater. 16 1826Google Scholar

    [19]

    Fu J F, Yuan L G, Ling F, Duan R M, Chen Q Y, Ma H, Zhou M, Song B, Zhou Y, Li Y F 2020 J. Power Sources 449 227474Google Scholar

    [20]

    Xiong X, Xue X N, Zhang M, Hao T Y, Han Z Y, Sun Y Y, Zhang, Y M, Liu F, Pei S P, Zhu L 2021 ACS Energy Lett. 6 3582Google Scholar

    [21]

    Ohisa S, Kato T, Takahashi T, Suzuki M, Hayashi Y, Koganezawa T, McNeill C R, Chiba T, Pu Y J, Kido J 2018 ACS Appl. Mater. Interfaces 10 17318Google Scholar

    [22]

    Stevens M A, Silva C, Russell D M, Friend R H 2001 Phys. Rev. B 63 165213Google Scholar

    [23]

    Xia R D, Heliotis G, Bradley D D C 2003 Appl. Phys. Lett. 82 3599Google Scholar

    [24]

    Hayes G R, Samuel I D W, Phillips R T 1997 Synth. Met. 84 889Google Scholar

    [25]

    Kretsch K P, Belton C, Lipson S, Blau W J, Henari F Z, Rost H, Pfeiffer S, Teuschel, A, Tillmann H, Horhold H H 1999 J. Appl. Phys. 86 6155Google Scholar

    [26]

    Calzado E M, Villalvilla J M, Boj P G, Quintana J A, Diaz-Garcia M A 2005 J. Appl. Phys. 97 093103Google Scholar

    [27]

    Anni M, Perulli A, Monti G 2012 J. Appl. Phys. 111 093109Google Scholar

    [28]

    Heliotis G, Bradley D D C, Turnbull G A, Samuel I D W 2002 Appl. Phys. Lett. 81 415Google Scholar

    [29]

    Peng X, Liu L Y, Wu J F, Li Y G, Hou Z J, Xu L, Wang W C, Li F M 2000 Opt. Lett. 25 314Google Scholar

    [30]

    Feng Y J, Yu X L, Zhang R, Wu J W, Zhang P, Chen S J, Zhang, D K 2017 J. Alloys Compd. 729 513Google Scholar

    [31]

    杜惠军, 李睿, 骆逸夫, 王竹君, 吴霞, 伊书颖, 皮明雨, 张丁可 2019 中国科学: 化学 49 1475

    Du H J, Li R, Luo Y F, Wang Z J, Wu X, Yi S Y, Pi M Y, Zhang D K 2019 Sci. Sin. Chim. 49 1475

    [32]

    Lahoz F, Oton C J, Capuj N, Ferrer-Gonzalez M, Cheylan S, Navarro-Urrios D 2009 Opt. Express 17 16766Google Scholar

    [33]

    Pauchard M, Swensen J, Moses D, Heeger A J, Perzon E, Andersson M R 2003 J. Appl. Phys. 94 3543Google Scholar

    [34]

    Haugeneder A, Neges M, Kallinger C, Spirkl W, Lemmer U, Feldmann J, Amann M C, Scherf U 1999 J. Appl. Phys. 85 1124Google Scholar

    [35]

    Reufer M, Feldmann J, Rudati P, Ruhl A, Muller D, Meerholz K, Karnutsch C, Gerken M, Lemmer U 2005 Appl. Phys. Lett. 86 221102Google Scholar

    [36]

    Therezio E M, Hidalgo A A, Oliveira O N, Silva R A, Marletta A 2015 J. Braz. Chem. Soc. 26 1798Google Scholar

  • 图 1  在不同基底上利用PFN-Br做界面层, 改善常见非极性溶剂可溶聚合物增益介质性能的制备过程示意图

    Fig. 1.  Schematic diagram of fabrication processes of using PFN-Br as interlayer for modifying gain properties of the common non-polar solvent soluble polymeric gain mediums.

    图 2  (a) PFN-Br薄膜的原子力显微镜(AFM)图; (b)甲苯冲涂后的PFN-Br薄膜AFM图

    Fig. 2.  (a) Atomic force microscope (AFM) diagram of PFN-Br film; (b) AFM diagram of PFN-Br film after toluene impact coating.

    图 3  ASE测试光路图

    Fig. 3.  Scheme of light path in ASE test.

    图 4  (a) PFN-Br薄膜的吸收和PL光谱; (b) F8BT薄膜的吸收、PL光谱和ASE光谱; (c) MEH-PPV薄膜的吸收、PL光谱和ASE光谱

    Fig. 4.  (a) Absorption and PL spectra of PFN-Br film; (b) absorption, PL, and ASE spectra of F8BT film; (c) absorption, PL, and ASE spectra of MEH-PPV film.

    图 5  (a) PFN-Br薄膜(120 nm)的FWHM和输出强度随泵浦能量密度的变化; (b)不同泵浦能量下, PFN-Br的归一化发射光谱

    Fig. 5.  (a) FWHM and output intensity of PFN-Br thin film (120 nm) as a function of pump energy density; (b) normalized emission spectra of PFN-Br at different pump energy density.

    图 6  (a)不同厚度的PFN-Br薄膜的ASE光谱; (b) PFN-Br薄膜的ASE阈值和ASE波长随膜厚的变化

    Fig. 6.  (a) ASE spectra of PFN-Br films with different thicknesses; (b) ASE threshold and ASE wavelength of PFN-Br films as a function of film thickness.

    图 7  在石英基底上, 引入不同厚度PFN-Br界面层条件下, 测得的F8BT薄膜发射谱的(a) FWHM和(b)峰位强度随泵浦能量变化的示意图

    Fig. 7.  (a) FWHM and (b) peak intensities under different pump energies measured in F8BT films on quartz substrates with inserted PFN-Br interlayers of various thickness values.

    图 8  在石英基底上, 不同PFN-Br厚度上F8BT薄膜的ASE光谱

    Fig. 8.  ASE spectra of F8BT films on quartz with inserted PFN-Br interlayers of different thickness values.

    图 9  F8BT单层和PFN-Br(50 nm)/F8BT双层器件中F8BT薄膜的损耗

    Fig. 9.  Loss coefficient of F8BT in monolayer and PFN-Br (50 nm)/F8BT bilayer structures.

    图 10  MEH-PPV在石英、玻璃以及在引入不同厚度PFN-Br界面层条件下ITO玻璃上测得的(a)发射谱半峰宽以及(b)发射峰强度随泵浦能量的变化

    Fig. 10.  (a) FWHM and (b) peak intensities measured in MEH-PPV films on ITO glass with inserted PFN-Br interlayers of different film thickness, compared with MEH-PPV monolayer on quartz and glass.

    图 11  MEH-PPV薄膜在不同基底上以及在不同厚度PFN-Br薄膜上(ITO玻璃基底)的ASE光谱

    Fig. 11.  ASE spectra of MEH-PPV monolayer on different substrates and in bilayer devices with inserted PFN-Br interlayers of different thickness on ITO glass.

    图 12  ITO基底的吸收光谱, 以及MEH-PPV薄膜分别在ITO玻璃和石英基底上的吸收光谱(已除去基底的吸收背景, 如插图)和PL光谱

    Fig. 12.  Absorption spectra of ITO substrates; the absorption spectra (small illustration) and PL spectra of MEH-PPV thin films on ITO glass and quartz, respectively.

    表 1  不同溶液浓度和转速制备的薄膜

    Table 1.  Thin films prepared at different solution concentrations and rotational speeds.

    材料 溶液浓度/
    (mg·mL–1)
    转速/(r·min–1) 膜厚/nm
    PFN-Br 3 2000 15
    PFN-Br 4 2000 30
    PFN-Br 5 2000 50
    PFN-Br 6 2000 65
    PFN-Br 7 2000 100
    PFN-Br 12 4000 120
    PFN-Br 12 3000 130
    PFN-Br 12 2000 160
    PFN-Br 12 1500 170
    PFN-Br 12 1000 220
    F8BT 25 2000 160
    MEH-PPV 25 2000 210
    下载: 导出CSV
  • [1]

    Chenais S, Forget S 2012 Polym. Int. 61 390Google Scholar

    [2]

    Yap B K, Xia R D, Campoy-Quiles M, Stavrinou P N, Bradley D D C 2008 Nat. Mater. 7 376Google Scholar

    [3]

    Kim H, Schulte N, Zhou G, Mullen K, Laquai F 2011 Adv. Mater. 23 894Google Scholar

    [4]

    Feng Z J, Cheng Z, Jin H X, Lu P 2022 J. Mater. Chem. C Mater. 10 4497Google Scholar

    [5]

    Sarma M, Chen L M, Chen Y S, Wong K T 2022 Mater. Sci. Eng. R Rep. 150 100689Google Scholar

    [6]

    Al-Azzawi A G S, Aziz S B, Dannoun E M A, Iraqi A, Nofal M M, Murad A R, Hussein A M 2023 Polymers 15 164Google Scholar

    [7]

    Li B, Yang X, Li S Y, Yuan J Y 2023 Energy Environ. Sci. 16 723Google Scholar

    [8]

    Wang J J, Wen S G, Hu J, Han J H, Yang C P, Li J F, Bao X C, Yan S K 2022 Chem. Eng. J. 452 139462Google Scholar

    [9]

    Yazdani S A, Mikaeili A, Bencheikh F, Adachi C 2022 Jpn. J. Appl. Phys. 61 074003Google Scholar

    [10]

    Zhang Q, Tao W W, Huang J S, Xia R D, Cabanillas-Gonzalez J 2021 Adv. Photonics. Res. 2 2000155Google Scholar

    [11]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photonics 6 591Google Scholar

    [12]

    Zhao Y Y, Zhang Q W, Liu Y F, Lv C, Guo S, Liu X P, Bi Y G, Li H W, Wu Y Q 2022 Org. Electron. 109 106620Google Scholar

    [13]

    Feng C, Wang X J, He Z C, Cao Y 2021 Sol. RRL 5 2000753Google Scholar

    [14]

    Hsu F C, Lin Y A, Li C P 2021 Org. Electron. 89 106008Google Scholar

    [15]

    Li M Q, Jiang J X, Ning Y J, Zhao S L, Masri W F A, Wageh S, Al-Ghamdi A 2022 Synth. Met. 289 117122Google Scholar

    [16]

    Hu Z C, Zhang K, Huang F, Cao Y 2015 Chem. Commun. 51 5572Google Scholar

    [17]

    Huang F, Wu H B, Wang D, Yang W, Cao Y 2004 Chem. Mater. 16 708Google Scholar

    [18]

    Wu H B, Huang F, Mo Y Q, Yang W, Wang D L Peng J B, Cao Y 2004 Adv. Mater. 16 1826Google Scholar

    [19]

    Fu J F, Yuan L G, Ling F, Duan R M, Chen Q Y, Ma H, Zhou M, Song B, Zhou Y, Li Y F 2020 J. Power Sources 449 227474Google Scholar

    [20]

    Xiong X, Xue X N, Zhang M, Hao T Y, Han Z Y, Sun Y Y, Zhang, Y M, Liu F, Pei S P, Zhu L 2021 ACS Energy Lett. 6 3582Google Scholar

    [21]

    Ohisa S, Kato T, Takahashi T, Suzuki M, Hayashi Y, Koganezawa T, McNeill C R, Chiba T, Pu Y J, Kido J 2018 ACS Appl. Mater. Interfaces 10 17318Google Scholar

    [22]

    Stevens M A, Silva C, Russell D M, Friend R H 2001 Phys. Rev. B 63 165213Google Scholar

    [23]

    Xia R D, Heliotis G, Bradley D D C 2003 Appl. Phys. Lett. 82 3599Google Scholar

    [24]

    Hayes G R, Samuel I D W, Phillips R T 1997 Synth. Met. 84 889Google Scholar

    [25]

    Kretsch K P, Belton C, Lipson S, Blau W J, Henari F Z, Rost H, Pfeiffer S, Teuschel, A, Tillmann H, Horhold H H 1999 J. Appl. Phys. 86 6155Google Scholar

    [26]

    Calzado E M, Villalvilla J M, Boj P G, Quintana J A, Diaz-Garcia M A 2005 J. Appl. Phys. 97 093103Google Scholar

    [27]

    Anni M, Perulli A, Monti G 2012 J. Appl. Phys. 111 093109Google Scholar

    [28]

    Heliotis G, Bradley D D C, Turnbull G A, Samuel I D W 2002 Appl. Phys. Lett. 81 415Google Scholar

    [29]

    Peng X, Liu L Y, Wu J F, Li Y G, Hou Z J, Xu L, Wang W C, Li F M 2000 Opt. Lett. 25 314Google Scholar

    [30]

    Feng Y J, Yu X L, Zhang R, Wu J W, Zhang P, Chen S J, Zhang, D K 2017 J. Alloys Compd. 729 513Google Scholar

    [31]

    杜惠军, 李睿, 骆逸夫, 王竹君, 吴霞, 伊书颖, 皮明雨, 张丁可 2019 中国科学: 化学 49 1475

    Du H J, Li R, Luo Y F, Wang Z J, Wu X, Yi S Y, Pi M Y, Zhang D K 2019 Sci. Sin. Chim. 49 1475

    [32]

    Lahoz F, Oton C J, Capuj N, Ferrer-Gonzalez M, Cheylan S, Navarro-Urrios D 2009 Opt. Express 17 16766Google Scholar

    [33]

    Pauchard M, Swensen J, Moses D, Heeger A J, Perzon E, Andersson M R 2003 J. Appl. Phys. 94 3543Google Scholar

    [34]

    Haugeneder A, Neges M, Kallinger C, Spirkl W, Lemmer U, Feldmann J, Amann M C, Scherf U 1999 J. Appl. Phys. 85 1124Google Scholar

    [35]

    Reufer M, Feldmann J, Rudati P, Ruhl A, Muller D, Meerholz K, Karnutsch C, Gerken M, Lemmer U 2005 Appl. Phys. Lett. 86 221102Google Scholar

    [36]

    Therezio E M, Hidalgo A A, Oliveira O N, Silva R A, Marletta A 2015 J. Braz. Chem. Soc. 26 1798Google Scholar

  • [1] 潘国兴, 李田, 汤国强, 张发培. 高度取向的半导体聚合物薄膜的溶液浸涂法生长及其电荷传输特性研究. 物理学报, 2017, 66(15): 156801. doi: 10.7498/aps.66.156801
    [2] 刘丽娟, 孔晓波, 刘永刚, 宣丽. 基于液晶/聚合物光栅的高转化效率有机半导体激光器. 物理学报, 2017, 66(24): 244204. doi: 10.7498/aps.66.244204
    [3] 罗亿, 王小林, 张汉伟, 粟荣涛, 马鹏飞, 周朴, 姜宗福. 光纤放大器放大自发辐射特性与高温易损点位置. 物理学报, 2017, 66(23): 234206. doi: 10.7498/aps.66.234206
    [4] 池浪, 费洪涛, 王腾, 易建鹏, 方月婷, 夏瑞东. 基于有机半导体激光材料的高灵敏度溶液检测传感器件. 物理学报, 2016, 65(6): 064202. doi: 10.7498/aps.65.064202
    [5] 岱钦, 吴杰, 邬小娇, 乌日娜, 彭增辉, 李大禹. 染料掺杂聚合物分散胆甾相液晶薄膜激光特性研究. 物理学报, 2015, 64(1): 016101. doi: 10.7498/aps.64.016101
    [6] 孙凯, 何志群, 梁春军. 多温度阶梯退火对有机聚合物太阳能电池器件性能的影响. 物理学报, 2014, 63(4): 048801. doi: 10.7498/aps.63.048801
    [7] 刘丽娟, 黄文彬, 刁志辉, 张桂洋, 彭增辉, 刘永刚, 宣丽. 基于聚合物支撑形貌液晶/聚合物光栅的低阈值分布反馈式激光器. 物理学报, 2014, 63(19): 194202. doi: 10.7498/aps.63.194202
    [8] 高博文, 高潮, 阙文修, 韦玮. 新型高效聚合物/富勒烯有机光伏电池研究进展. 物理学报, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [9] 吉选芒, 姜其畅, 刘劲松. 外加电场光折变有机聚合物串联回路中独立空间孤子对. 物理学报, 2011, 60(3): 034212. doi: 10.7498/aps.60.034212
    [10] 邓舒鹏, 李文萃, 黄文彬, 刘永刚, 彭增辉, 鲁兴海, 宣丽. 基于全息聚合物分散液晶的有机二维光子晶体激光器的研究. 物理学报, 2011, 60(8): 086103. doi: 10.7498/aps.60.086103
    [11] 邹建华, 兰林锋, 徐瑞霞, 杨伟, 彭俊彪. 有机薄膜晶体管驱动聚合物发光二极管研究. 物理学报, 2010, 59(2): 1275-1281. doi: 10.7498/aps.59.1275
    [12] 徐登. 有机盐掺杂聚合物微腔的受激发射特性研究(已撤稿). 物理学报, 2009, 58(4): 2781-2784. doi: 10.7498/aps.58.2781
    [13] 谢 耩, 温建忠, 汪国平, 王建波. 聚合物表面银纳米颗粒的大面积均匀沉积及其应用. 物理学报, 2005, 54(1): 242-245. doi: 10.7498/aps.54.242
    [14] 付吉永, 任俊峰, 刘德胜, 解士杰. 一维铁磁/有机共轭聚合物的自旋极化研究. 物理学报, 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [15] 侯春风, 阿不都热苏力, 杜春光, 孙秀冬, 李师群. 光折变有机聚合物中的空间孤子. 物理学报, 2001, 50(11): 2159-2165. doi: 10.7498/aps.50.2159
    [16] 封伟, 曹猛, 韦玮, 吴洪才, 万梅香, 吉野胜美. 有机聚合物受体给体复合体薄膜光伏电池性能研究. 物理学报, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [17] 徐则达, 蔡志岗, 张灵志, 刘焰发, 杨 杰, 佘卫龙, 周建英. 有机聚合物薄膜中的横向效应与准晶结构. 物理学报, 2000, 49(6): 1091-1093. doi: 10.7498/aps.49.1091
    [18] 任立勇, 姚保利, 侯 洵, 易文辉, 汪敏强. 有机聚合物薄膜激光诱导相位孔衍射的实验和理论. 物理学报, 2000, 49(10): 1973-1977. doi: 10.7498/aps.49.1973
    [19] 吴长勤, 张宇钟, 傅荣堂, 孙 鑫. 纯有机聚合物磁性的模型研究. 物理学报, 1999, 48(4): 713-720. doi: 10.7498/aps.48.713
    [20] 傅荣堂, 王晓东, 孙 鑫, 川添良幸. 纯有机聚合物磁性的第一性原理研究. 物理学报, 1998, 47(11): 1840-1846. doi: 10.7498/aps.47.1840
计量
  • 文章访问数:  3416
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-13
  • 修回日期:  2023-07-25
  • 上网日期:  2023-09-05
  • 刊出日期:  2023-11-05

/

返回文章
返回