搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

342W全光纤结构窄线宽连续掺铥光纤激光器

刘江 刘晨 师红星 王璞

引用本文:
Citation:

342W全光纤结构窄线宽连续掺铥光纤激光器

刘江, 刘晨, 师红星, 王璞

342 W narrow-linewidth continuous-wave thulium-doped all-fiber laser

Liu Jiang, Liu Chen, Shi Hong-Xing, Wang Pu
PDF
导出引用
  • 报道了一个全光纤主振荡功率放大结构的窄线宽连续掺铥光纤激光器,该激光器由窄线宽连续掺铥光纤激光种子源和两级包层抽运掺铥光纤放大器组成.自制的窄线宽掺铥光纤激光种子源经过两级高功率包层抽运掺铥光纤放大器之后,最高平均输出功率为342 W,掺铥光纤功率放大器的斜率效率为56%,输出激光的中心波长为2000.3 nm,3 dB光谱带宽仅为90 pm.在放大过程中,功率放大器的反向监测端没有观察到受激布里渊散射效应,输出功率仅受限于当前可用的793 nm半导体抽运源的功率.据我们所知,该结果为目前国际上2m波段全光纤结构窄线宽激光器所产生的最高输出功率.
    High-power narrow-linewidth rare-earth-doped fiber lasers, which are well known for their high beam quality and high efficiency properties, have rapidly developed in the last decade, due to the needs of a vast range of applications such as nonlinear frequency conversion, and incoherent spectral beam combination to further scale up the total output power of fiber lasers. At the same time, many efforts have also been made to extend the operating wavelength of narrow-linewidth fiber laser toward the longer mid-infrared wavelength region, which was motivated by a large number of promising applications such as atmosphere monitoring, and pump source for mid-infrared optical parametric oscillator. In most cases, thulium-doped fiber lasers operate efficiently in a wavelength range of 1.8-2.1 m, which could be considered as being one of the most important sources of narrow-linewidth laser radiation that has been developed and intensively investigated in the last several years. Here, we demonstrate a high-power narrow-linewidth continuous-wave thulium-doped all-fiber laser based on master-oscillator power-amplifier (MOPA) configuration. The MOPA yields 342 W of narrow-linewidth laser output at the central wavelength of 2000.3 nm with a 3-dB spectral bandwidth of 90 pm. The beam quality factor is measured to be M2 of 1.15 at an output power of 300 W. No indication of stimulated Brillouin scattering could be observed at the highest output power level, and the output power is only currently limited by 793 nm available pump power. This kind of high-power narrow-linewidth thulium-doped all-fiber MOPA represents a promising achievement in the generation of high-power laser source via incoherent spectral beam combination.
      通信作者: 王璞, wangpuemail@bjut.edu.cn
    • 基金项目: 国家自然科学基金重大科研仪器研制项目(批准号:61527822)、国家自然科学基金重点项目(批准号:61235010)、国家自然科学基金青年项目(批准号:61505004)、中国博士后科学基金特别资助项目(批准号:2016T90019)、中国博士后科学基金面上资助项目(批准号:2015M570019)、北京市博士后工作经费资助项目(批准号:2015ZZ-03)和北京市教委科技计划一般项目(批准号:KM201610005028)资助的课题.
      Corresponding author: Wang Pu, wangpuemail@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61527822, 61235010, 61505004), the China Postdoctoral Science Foundation (Grant Nos. 2016T90019, 2015M570019), the Beijing Postdoctoral Research Foundation, China (Grant No. 2015ZZ-03), and the Scientific Research General Program of Beijing Municipal Commission of Education, China (Grant No. KM201610005028).
    [1]

    Zhang L M, Zhou S H, Zhao H, Zhang K, Hao J P, Zhang D Y, Zhu C, Li Y, Wang X F, Zhang H B 2014 Acta Phys. Sin. 63 134205 (in Chinese) [张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬2014物理学报63 134205]

    [2]

    Dong F L, Ge T W, Zhang X X, Tan Q R, Wang Z Y 2015 Acta Phys. Sin. 64 084205 (in Chinese) [董繁龙, 葛廷武, 张雪霞, 谭祺瑞, 王智勇2015物理学报64 084205]

    [3]

    Loftus T H, Liu A, Hoffman P R, Thomas A M, Norsen M, Royse R, Honea E 2007 Opt. Lett. 32 349

    [4]

    Schreiber T, Wirth C, Schmidt O, Andersen T V, Tsybin I, Böhme S, Peschel T, Brckner F, Clausnitzer T, Röser F, Eberhardt R, Limpert J, Tnnermann A 2009 IEEE J. Sel. Top. Quantum Electron 15 354

    [5]

    Wirth C, Schmidt O, Tsybin I, Schreiber T, Eberhardt R, Limpert J, Tnnermann A, Ludewigt K, Gowin M, Have E, Jung M 2011 Opt. Lett. 36 3118

    [6]

    Drachenberg D R, Andrusyak O, Venus G, Smirnov V, Glebov L 2014 Appl. Opt. 53 1242

    [7]

    Goodno G D, Book L D, Rothenberg E 2009 Opt. Lett. 34 1204

    [8]

    Wang X, Zhou P, Wang X, Xiao H, Si L 2013 Opt. Express 21 32386

    [9]

    Pearson L, Kim J W, Zhang Z, Ibsen M, Sahu J K, Clarkson W A 2010 Opt. Express 18 1607

    [10]

    Shah L, Sims R A, Kadwani P, Willis C C C, Bradford J B, Pung A, Poutous M K, Johnson E G, Richardson M 2012 Opt. Express 20 20558

    [11]

    Liu J, Shi H, Liu K, Hou Y, Wang P 2014 Opt. Express 22 13572

    [12]

    Liu J, Wang P 2013 Chinese J Laser 40 2001 (in Chinese) [刘江, 王璞2013中国激光40 2001]

    [13]

    Liu J, Wang Q, Wang P 2012 Opt. Express 20 22442

    [14]

    Liu J, Xu J, Liu K, Tan F, Wang P 2013 Opt. Lett. 38 4150

    [15]

    Simsa R A, Willisa C C C, Kadwania P, McComba T S, Shaha L, Sudesha V, Rothb Z, Poutousb M K, Johnsonb E, Richardson M 2011 Opt. Commun. 284 1988

    [16]

    Shah L, Sims R A, Kadwani P, Willis C C C, Bradford J B, Sincore A, Richardson M 2015 Appl. Opt. 54 757

  • [1]

    Zhang L M, Zhou S H, Zhao H, Zhang K, Hao J P, Zhang D Y, Zhu C, Li Y, Wang X F, Zhang H B 2014 Acta Phys. Sin. 63 134205 (in Chinese) [张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬2014物理学报63 134205]

    [2]

    Dong F L, Ge T W, Zhang X X, Tan Q R, Wang Z Y 2015 Acta Phys. Sin. 64 084205 (in Chinese) [董繁龙, 葛廷武, 张雪霞, 谭祺瑞, 王智勇2015物理学报64 084205]

    [3]

    Loftus T H, Liu A, Hoffman P R, Thomas A M, Norsen M, Royse R, Honea E 2007 Opt. Lett. 32 349

    [4]

    Schreiber T, Wirth C, Schmidt O, Andersen T V, Tsybin I, Böhme S, Peschel T, Brckner F, Clausnitzer T, Röser F, Eberhardt R, Limpert J, Tnnermann A 2009 IEEE J. Sel. Top. Quantum Electron 15 354

    [5]

    Wirth C, Schmidt O, Tsybin I, Schreiber T, Eberhardt R, Limpert J, Tnnermann A, Ludewigt K, Gowin M, Have E, Jung M 2011 Opt. Lett. 36 3118

    [6]

    Drachenberg D R, Andrusyak O, Venus G, Smirnov V, Glebov L 2014 Appl. Opt. 53 1242

    [7]

    Goodno G D, Book L D, Rothenberg E 2009 Opt. Lett. 34 1204

    [8]

    Wang X, Zhou P, Wang X, Xiao H, Si L 2013 Opt. Express 21 32386

    [9]

    Pearson L, Kim J W, Zhang Z, Ibsen M, Sahu J K, Clarkson W A 2010 Opt. Express 18 1607

    [10]

    Shah L, Sims R A, Kadwani P, Willis C C C, Bradford J B, Pung A, Poutous M K, Johnson E G, Richardson M 2012 Opt. Express 20 20558

    [11]

    Liu J, Shi H, Liu K, Hou Y, Wang P 2014 Opt. Express 22 13572

    [12]

    Liu J, Wang P 2013 Chinese J Laser 40 2001 (in Chinese) [刘江, 王璞2013中国激光40 2001]

    [13]

    Liu J, Wang Q, Wang P 2012 Opt. Express 20 22442

    [14]

    Liu J, Xu J, Liu K, Tan F, Wang P 2013 Opt. Lett. 38 4150

    [15]

    Simsa R A, Willisa C C C, Kadwania P, McComba T S, Shaha L, Sudesha V, Rothb Z, Poutousb M K, Johnsonb E, Richardson M 2011 Opt. Commun. 284 1988

    [16]

    Shah L, Sims R A, Kadwani P, Willis C C C, Bradford J B, Sincore A, Richardson M 2015 Appl. Opt. 54 757

  • [1] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器. 物理学报, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [2] 夏情感, 肖文波, 李军华, 金鑫, 叶国敏, 吴华明, 马国红. 光纤激光器中包层功率剥离器散热性能的优化. 物理学报, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [3] 刘恒, 张钧翔, 付士杰, 盛泉, 史伟, 姚建铨. 有源光纤中稀土离子激光上能级寿命测量的研究. 物理学报, 2019, 68(22): 224202. doi: 10.7498/aps.68.20190616
    [4] 曹涧秋, 刘文博, 陈金宝, 陆启生. 单模热致超大模场掺镱光纤放大器的数值研究. 物理学报, 2017, 66(6): 064201. doi: 10.7498/aps.66.064201
    [5] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [6] 刘江, 刘晨, 师红星, 王璞. 203W全光纤全保偏结构皮秒掺铥光纤激光器. 物理学报, 2016, 65(19): 194208. doi: 10.7498/aps.65.194208
    [7] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [8] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [9] 宋有建, 胡明列, 谢辰, 柴路, 王清月. 输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器. 物理学报, 2010, 59(10): 7105-7110. doi: 10.7498/aps.59.7105
    [10] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生. 物理学报, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [11] 延凤平, 魏淮, 傅永军, 王琳, 郑凯, 毛向桥, 刘鹏, 彭健, 刘利松, 简水生. 石英基掺Tm3+包层抽运光纤激光器. 物理学报, 2009, 58(9): 6300-6303. doi: 10.7498/aps.58.6300
    [12] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [13] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [14] 任广军, 魏臻, 张强, 姚建铨. 掺钕保偏光纤放大器的研究. 物理学报, 2009, 58(6): 3897-3902. doi: 10.7498/aps.58.3897
    [15] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [16] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究. 物理学报, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [17] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定. 物理学报, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [18] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究. 物理学报, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [19] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究. 物理学报, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [20] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
计量
  • 文章访问数:  5797
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-18
  • 修回日期:  2016-07-14
  • 刊出日期:  2016-10-05

/

返回文章
返回