搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大陆坡内波环境中声传播模态耦合及强度起伏特征

高飞 徐芳华 李整林 秦继兴

引用本文:
Citation:

大陆坡内波环境中声传播模态耦合及强度起伏特征

高飞, 徐芳华, 李整林, 秦继兴

Mode coupling and intensity fluctuation of sound propagation over continental slope in presence of internal waves

Gao Fei, Xu Fang-Hua, Li Zheng-Lin, Qin Ji-Xing
PDF
HTML
导出引用
  • 大陆坡海域内波普遍存在, 其陆坡地形和内波过程都会引起显著的声场起伏. 已有研究工作主要关注内波或大陆坡单扰动因子对模态耦合和强度起伏的影响, 少见将内波和海底地形起伏同时作为影响因子进行研究. 文章考虑孤立子内波和海底地形对声传播的双重影响, 首先构建海洋波导模型, 然后基于简正波理论数值对比分析各波导模型条件下模态的耦合规律, 进而研究声场强度起伏特性及其物理机理. 研究结果表明, 当声波朝向或远离内波中心传播时, 模态耦合在内波与大陆坡的共同作用下出现耦合增强或衰减, 高号模态耦合系数振荡; 内波扰动的作用使得能量由低号模态耦合至高号模态, 提高了声场强度衰减; 斜坡的作用使得声波下坡传播时, 波导模态数增加、模态强度衰减降低; 大陆坡内波环境中的模态强度总和大于内波环境、小于大陆坡环境, 且模态组间的能量转移比只有内波或者大陆坡时更强, 高号模态从耦合中获得更多能量, 使得跃层以上水层能量增强.
    The topographic variation underwater of the continental slope is one of the main causes for triggering off the formation of internal waves, and the continental slope internal waves are ubiquitous in the ocean. The horizontal variation of waveguide environment, caused by the internal wave and the continental slope, can lead to acoustic normal mode coupling, and then generate sound field fluctuation. Most of the existing research work focused on studying the effect of single perturbation factor of either the internal waves or the continental slope on acoustic mode coupling and intensity fluctuation, while it is hard to find some research work that takes into account both the internal waves and the topographic variations as influencing factors. In this work, numerical simulations for the sound waves to propagate through the internal waves in the downhill direction are performed by using the acoustic coupled normal-mode model in four waveguide environments: thermocline, internal wave, continental slope and continental slope internal wave. And the mode coupling and intensity fluctuation characteristics and their physical mechanisms are studied by comparing and analyzing the simulation results of the four different waveguide environment constructed. Some conclusions are obtained as follows. The intra-mode conduction coefficients are symmetric with respect to the center of the internal wave, while the inter-mode coupling coefficients are antisymmetric around it. As the sound waves propagate toward or away from the center of the internal wave, the acoustic mode coupling becomes enhanced or weakened, and the coupling coefficients curves for large mode oscillate. The influence of internal wave perturbation makes the energy transfer from the smaller modes to the larger modes, which increases the attenuation of sound field intensity. The number of the waveguide modes increases and the mode intensity attenuation decreases, when the sound waves propagate downhill. The total intensity of all modes for the continental slope internal wave environment is greater than for the internal wave environment and less than for the continental environment, and the energy transfer between mode groups is stronger than for individual effect of internal wave or continental slope, which leads more energy to transfer from the smaller to larger mode groups and the energy of the sound field above the thermocline to increase.
      通信作者: 徐芳华, fxu@mails.tsinghua.edu.cn ; 秦继兴, qjx@mail.ioa.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFA0607900)、国家自然科学基金(批准号: 42176019, 11874061)和中国科学院青年创新促进会资助的课题(批准号: 2021023).
      Corresponding author: Xu Fang-Hua, fxu@mails.tsinghua.edu.cn ; Qin Ji-Xing, qjx@mail.ioa.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0607900), the National Natural Science Foundation of China (Grant Nos. 42176019, 11874061), and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2021023).
    [1]

    Whalen C B, Lavergne C D, Garabato N A C, Klymak J M, Mackinnon J A, Sheen 2020 Nature 1 606

    [2]

    Alford M H, Mackinnon J A, Simmons H L Nash J D 2016 Annu. Rev. Mar. Sci. 8 95Google Scholar

    [3]

    Zhao Z, Alford M H, Girton J B, Rainville L, Simmons H L 2016 J. Phys. Oceanogr. 46 1657Google Scholar

    [4]

    Grisouard N, Staquet C 2010 Nonlinear Processes Geophys. 17 575Google Scholar

    [5]

    张泽众, 骆文于, 庞哲, 周益清 2019 物理学报 68 204302Google Scholar

    Zhang Z Z, Luo W Y, Pan Z, Zhou Y Q 2019 Acta Phys. Sin. 68 204302Google Scholar

    [6]

    Preisig J C, Duda T F 1997 IEEE J. Oceanic Eng. 22 256Google Scholar

    [7]

    Zhou J X, Zhang X Z, Rogers P H 1991 J. Acoust. Soc. Am. 90 2042Google Scholar

    [8]

    Rouseff D, Turgut A, Wolf S N, Finette S, Orr M H, Pasewark B H, Apel J R, Badiey M, Chiu C S, Headrick R H, Lynch J F, Kemp J N, Newhall A E, von der Heydt K, Tielbuerger D 2002 J. Acoust. Soc. Am. 111 1655Google Scholar

    [9]

    Katsnelson B G, Pereselkov S A 2000 Acoust. Phys. 46 684Google Scholar

    [10]

    Lin Y T, Duda T F, Lynch J F 2009 J. Acoust. Soc. Am. 126 1752Google Scholar

    [11]

    Milone M A, DeCourcy B J, Lin Y T, Siegmann 2019 J. Acoust. Soc. Am. 146 1934Google Scholar

    [12]

    秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于 2016 物理学报 65 034301Google Scholar

    Qin J X, Katsnelson B G, Peng Z H, Li Z L, Zhang R H, Luo W Y 2016 Acta Phys. Sin. 65 034301Google Scholar

    [13]

    Chiu C S, Ramp S R, Miller C W, Lynch J F, Duda T F, Tang T Y 2004 IEEE J. Oceanic Eng. 29 1249Google Scholar

    [14]

    秦继兴, Katsnelson Boris, 李整林, 张仁和, 骆文于 2016 声学学报 41 145

    Qin J X, Katsnelson B G, Li Z L, Zhang R H, Luo W Y 2016 Acta Acustia 41 145

    [15]

    Badiey M, Katsnelson B G, Lynch J F, Pereselkov S, Siegmann W L 2005 J. Acoust. Soc. Am. 117 613Google Scholar

    [16]

    李沁然, 孙超, 谢磊 2022 物理学报 71 024302Google Scholar

    Li Q R, Sun C, Xie L 2022 Acta Phys. Sin. 71 024302Google Scholar

    [17]

    Chiu L Y S, Chang A Y Y, Reeder D B 2015 J. Acoust. Soc. Am. 138 515Google Scholar

    [18]

    刘代, 李整林, 刘若芸 2021 物理学报 70 034302Google Scholar

    Liu D, Li Z L, Liu R Y 2021 Acta Phys. Sin. 70 034302Google Scholar

    [19]

    莫亚枭, 朴胜春, 张海刚, 李丽 2014 物理学报 63 214302Google Scholar

    Mo Y X, Piao S C, Zhang H G Li L 2014 Acta Phys. Sin. 63 214302Google Scholar

    [20]

    Sagers J D, Ballard M S, Knobles D P 2014 J. Acoust. Soc. Am. 136 2453Google Scholar

    [21]

    Chiu L Y S, Reeder D B, Chang Y Y, Chen C F, Chiu C S, Lynch J F 2013 J. Acoust. Soc. Am. 133 1306Google Scholar

    [22]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) Technical Report SM-2

    [23]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) pp403–408

    [24]

    Apel J R, Ostrovsky L A, Stepanyants Y A, Lynch J F 2007 J. Acoust. Soc. Am. 121 695Google Scholar

    [25]

    Yang T C 2014 J. Acoust. Soc. Am. 135 610Google Scholar

    [26]

    Dozier L B, Tappert F D 1978 J. Acoust. Soc. Am. 63 353Google Scholar

    [27]

    Yang T C 2017 IEEE J. Oceanic Eng. 42 663Google Scholar

  • 图 1  大陆坡内波波导环境参数示意图

    Fig. 1.  Diagram of parameters for continental slope internal wave waveguide environment.

    图 2  仿真用四种典型海洋环境 (a) 环境1(跃层环境); (b) 环境2(内波环境); (c)环境3(大陆坡环境); (d) 环境4(大陆坡内波环境)

    Fig. 2.  Four typical environments for simulation: (a) Environment 1 (thermocline); (b) environment 2 (internal wave); (c) environment 3 (continental slope); (d) environment 4 (continental slope internal wave).

    图 3  内波环境水平声速梯度分布

    Fig. 3.  Distributions of horizontal sound speed gradient in internal wave environment.

    图 4  第1—4号简正波在不同波导环境中水平距离2—4 km处的模内传导系数$ C_{m, m}^{j + 1} $ (a) 1号模态; (b) 2号模态; (c) 3号模态; (d) 4号模态

    Fig. 4.  The intra-mode conduction coefficients $ C_{m, m}^{j + 1} $ of mode 1, 2, 3 and 4 at range 2–4 km in different waveguide environments: (a) Mode 1; (b) mode 2; (c) mode 3; (d) mode 4.

    图 5  不同波导环境中水平距离2—4 km处的模间耦合系数$ C_{1, n}^{j{\text{ + }}1} $ (a) 1号与2号模态; (b) 1号与3号模态; (c) 1号与5号模态; (d) 1号与13号模态

    Fig. 5.  The inter-mode coupling coefficients $ C_{1, n}^{j{\text{ + }}1} $ at range of 2–4 km in different waveguide environments: (a) Mode 1 with 2; (b) mode 1 with 3; (c) mode 1 with 5; (d) mode 1 with 13.

    图 6  不同波导环境中1号局地模态函数 (a) 内波环境; (b) 大陆坡环境; (c) 大陆坡内波环境

    Fig. 6.  The local function of mode 1 in different waveguide environments: (a) Internal wave environment; (b) continental slope environment; (c) continental slope internal wave environment.

    图 7  不同波导环境中1—20号简正波模态强度随距离变化 (a) 跃层环境; (b) 内波环境; (c) 大陆坡环境; (d) 大陆坡内波环境, 红色点划线为1—6号模态, 蓝色实线为7—13号模态, 黑色点线为14—20号模态

    Fig. 7.  Modes 1–20 intensity variation with range in different waveguide environments: (a) Thermocline environment; (b) internal wave environment; (c) continental slope environment; (d) continental slope internal wave environment, the red dotted lines, blue solid lines and black dotted lines represent mode groups of 1–6, 7–13 and 14–20, respectively.

    图 8  内波波导环境中8号(a), 11号(b)简正波模态声场强度分布

    Fig. 8.  The mode 8 (a) and mode 11 (b) intensity versus range and depth in the internal wave environment.

    图 9  大陆坡波导环境中不同水平距离前13号简正波模态特征值分布, 特征值实部大于横虚线为波导模态

    Fig. 9.  Eigenvalues of the first 13 modes of different ranges in the continental slope environment.

    图 10  不同波导环境中各组模态强度之和随距离变化 (a) 所有模态$ {I_{{\text{1}}—{\max}}} $; (b) 1—6号模态$ {I_{{\text{1}}—{\text{6}}}} $; (c) 7—13号模态$ {I_{{\text{7}}—{\text{13}}}} $; (d) 14号以上模态$ {I_{{\text{14}}—{\max}}} $

    Fig. 10.  The sum of intensity of each mode groups versus range in different environments: (a) $ {I_{{\text{1}}—{\max}}} $; (b) $ {I_{{\text{1}}—{\text{6}}}} $; (c) ${I_{{\text{7}}—{\text{13}}}}$; (d) $ {I_{{\text{14}}—{\max}}} $.

    图 11  大陆坡内波环境中2.7—3.3 km范围内第4—8号简正波模态强度

    Fig. 11.  Intensity of modes 4–8 for at range 2.7–3.3 km in the continental slope internal wave environment.

    图 12  不同环境中参数变数时的模态强度之和$ {I_{{\text{1}}—{\text{6}}}} $随距离的变化 (a), (c), (e) 大陆坡内波环境; (b) 大陆坡环境; (d), (f) 内波环境

    Fig. 12.  The sum of intensity$ {I_{{\text{1}}—{\text{6}}}} $versus range in different environments of various parameters: (a), (c), (e) Continental slope internal wave environment; (b) continental slope environment; (d), (f) internal wave environment.

    图 13  不同环境中的声场分布 (a), (c), (e) 大陆坡环境3中的所有模态、1—6号模态、7—max号模态声场; (b), (d), (f) 大陆坡内波环境4中的所有模态、1—6号模态、7—max号模态声场. 其中, 图中虚线方框标记了0—35 m深度、2—6 km水平距离的区域

    Fig. 13.  The sound field in different environments: (a), (c), (e) The sound fields of the whole modes, models 1–6 and modes 7–max in continental slope environment, respectively; (b), (d), (f) the sound fields of the whole modes, models 1–6 and modes 7–max in continental slope internal wave environment, respectively. The white dashed boxes mark the area of 0–35 m and 2–6 km horizontal distance.

    表 1  仿真环境参数配置

    Table 1.  Configuration of environment parameters for simulations.

    参数类型参数值
    跃层上边界深度$ {z_{\text{u}}}/{\text{m}} $15
    跃层下边界深度$ {z_{\text{l}}} $/m35
    水体声速$ {c_{\text{u}}} $, $ {c_{\text{l}}} $/(m·s–1)1530, 1500
    内波的幅度$\varLambda$/m35
    内波的中心距离$ {r_0} $/km3
    内波的波宽$\varDelta$/m300
    大陆坡起点距离$ {r_{\text{s}}}/{\text{km}} $、水深$ {H_{\text{s}}}/{\text{m}} $2, 100
    大陆坡终点距离$ {r_{\text{e}}}/{\text{km}} $、水深$ {H_{\text{e}}}/{\text{m}} $4, 200
    大陆坡坡度/(°)2.86 (1/10)
    下载: 导出CSV
  • [1]

    Whalen C B, Lavergne C D, Garabato N A C, Klymak J M, Mackinnon J A, Sheen 2020 Nature 1 606

    [2]

    Alford M H, Mackinnon J A, Simmons H L Nash J D 2016 Annu. Rev. Mar. Sci. 8 95Google Scholar

    [3]

    Zhao Z, Alford M H, Girton J B, Rainville L, Simmons H L 2016 J. Phys. Oceanogr. 46 1657Google Scholar

    [4]

    Grisouard N, Staquet C 2010 Nonlinear Processes Geophys. 17 575Google Scholar

    [5]

    张泽众, 骆文于, 庞哲, 周益清 2019 物理学报 68 204302Google Scholar

    Zhang Z Z, Luo W Y, Pan Z, Zhou Y Q 2019 Acta Phys. Sin. 68 204302Google Scholar

    [6]

    Preisig J C, Duda T F 1997 IEEE J. Oceanic Eng. 22 256Google Scholar

    [7]

    Zhou J X, Zhang X Z, Rogers P H 1991 J. Acoust. Soc. Am. 90 2042Google Scholar

    [8]

    Rouseff D, Turgut A, Wolf S N, Finette S, Orr M H, Pasewark B H, Apel J R, Badiey M, Chiu C S, Headrick R H, Lynch J F, Kemp J N, Newhall A E, von der Heydt K, Tielbuerger D 2002 J. Acoust. Soc. Am. 111 1655Google Scholar

    [9]

    Katsnelson B G, Pereselkov S A 2000 Acoust. Phys. 46 684Google Scholar

    [10]

    Lin Y T, Duda T F, Lynch J F 2009 J. Acoust. Soc. Am. 126 1752Google Scholar

    [11]

    Milone M A, DeCourcy B J, Lin Y T, Siegmann 2019 J. Acoust. Soc. Am. 146 1934Google Scholar

    [12]

    秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于 2016 物理学报 65 034301Google Scholar

    Qin J X, Katsnelson B G, Peng Z H, Li Z L, Zhang R H, Luo W Y 2016 Acta Phys. Sin. 65 034301Google Scholar

    [13]

    Chiu C S, Ramp S R, Miller C W, Lynch J F, Duda T F, Tang T Y 2004 IEEE J. Oceanic Eng. 29 1249Google Scholar

    [14]

    秦继兴, Katsnelson Boris, 李整林, 张仁和, 骆文于 2016 声学学报 41 145

    Qin J X, Katsnelson B G, Li Z L, Zhang R H, Luo W Y 2016 Acta Acustia 41 145

    [15]

    Badiey M, Katsnelson B G, Lynch J F, Pereselkov S, Siegmann W L 2005 J. Acoust. Soc. Am. 117 613Google Scholar

    [16]

    李沁然, 孙超, 谢磊 2022 物理学报 71 024302Google Scholar

    Li Q R, Sun C, Xie L 2022 Acta Phys. Sin. 71 024302Google Scholar

    [17]

    Chiu L Y S, Chang A Y Y, Reeder D B 2015 J. Acoust. Soc. Am. 138 515Google Scholar

    [18]

    刘代, 李整林, 刘若芸 2021 物理学报 70 034302Google Scholar

    Liu D, Li Z L, Liu R Y 2021 Acta Phys. Sin. 70 034302Google Scholar

    [19]

    莫亚枭, 朴胜春, 张海刚, 李丽 2014 物理学报 63 214302Google Scholar

    Mo Y X, Piao S C, Zhang H G Li L 2014 Acta Phys. Sin. 63 214302Google Scholar

    [20]

    Sagers J D, Ballard M S, Knobles D P 2014 J. Acoust. Soc. Am. 136 2453Google Scholar

    [21]

    Chiu L Y S, Reeder D B, Chang Y Y, Chen C F, Chiu C S, Lynch J F 2013 J. Acoust. Soc. Am. 133 1306Google Scholar

    [22]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) Technical Report SM-2

    [23]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) pp403–408

    [24]

    Apel J R, Ostrovsky L A, Stepanyants Y A, Lynch J F 2007 J. Acoust. Soc. Am. 121 695Google Scholar

    [25]

    Yang T C 2014 J. Acoust. Soc. Am. 135 610Google Scholar

    [26]

    Dozier L B, Tappert F D 1978 J. Acoust. Soc. Am. 63 353Google Scholar

    [27]

    Yang T C 2017 IEEE J. Oceanic Eng. 42 663Google Scholar

  • [1] 王俊, 蔡飞燕, 张汝钧, 李永川, 周伟, 李飞, 邓科, 郑海荣. 基于压电声子晶体板波声场的微粒操控. 物理学报, 2024, 73(7): 074302. doi: 10.7498/aps.73.20231886
    [2] 何兆阳, 雷波, 杨益新. 源致内波引起的声场扰动及其检测方法. 物理学报, 2023, 72(14): 144301. doi: 10.7498/aps.72.20230346
    [3] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, 2022, 71(2): 021401. doi: 10.7498/aps.71.20211083
    [4] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律. 物理学报, 2022, 71(2): 024302. doi: 10.7498/aps.71.20211132
    [5] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211083
    [6] 张士钊, 朴胜春. 倾斜弹性海底条件下浅海声场的简正波相干耦合特性分析. 物理学报, 2021, 70(21): 214304. doi: 10.7498/aps.70.20211013
    [7] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211132
    [8] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [9] 周建波, 朴胜春, 刘亚琴, 祝捍皓. 海面随机起伏对噪声场空间特性的影响规律. 物理学报, 2017, 66(1): 014301. doi: 10.7498/aps.66.014301
    [10] 谢平, 杨芳梅, 李欣欣, 杨勇, 陈晓玲, 张利泰. 基于变分模态分解-传递熵的脑肌电信号耦合分析. 物理学报, 2016, 65(11): 118701. doi: 10.7498/aps.65.118701
    [11] 谢磊, 孙超, 刘雄厚, 蒋光禹. 陆架斜坡海域声场特性对常规波束形成阵增益的影响. 物理学报, 2016, 65(14): 144303. doi: 10.7498/aps.65.144303
    [12] 聂永发, 朱海潮. 利用源强密度声辐射模态重建声场. 物理学报, 2014, 63(10): 104303. doi: 10.7498/aps.63.104303
    [13] 张翰, 管玉平. 南海夏季风与登陆我国大陆初旋的关系. 物理学报, 2012, 61(12): 129201. doi: 10.7498/aps.61.129201
    [14] 张翰, 管玉平. 登陆我国大陆热带气旋的纬度分布特征. 物理学报, 2012, 61(16): 169203. doi: 10.7498/aps.61.169203
    [15] 石玉仁, 张娟, 杨红娟, 段文山. 耦合KdV方程的双峰孤立子及其稳定性. 物理学报, 2011, 60(2): 020401. doi: 10.7498/aps.60.020401
    [16] 裴利军, 邱本花. 模态分解法在非恒同耦合系统同步研究中的推广. 物理学报, 2010, 59(1): 164-170. doi: 10.7498/aps.59.164
    [17] 周天寿, 张锁春. 线性耦合Oregonator振子中的Echo波. 物理学报, 2001, 50(1): 8-12. doi: 10.7498/aps.50.8
    [18] 张民, 吴振森, 张延冬, 杨廷高. 脉冲波在强起伏湍流介质中的传播特征分析. 物理学报, 2001, 50(6): 1052-1057. doi: 10.7498/aps.50.1052
    [19] 闫循领, 董瑞新, 王伯运. α螺旋蛋白质螺旋线模型的耦合孤立子. 物理学报, 1999, 48(4): 751-756. doi: 10.7498/aps.48.751
    [20] 唐应吾. 具有随机起伏表面的正声速梯度浅海中的简正波声场. 物理学报, 1976, 25(6): 481-486. doi: 10.7498/aps.25.481
计量
  • 文章访问数:  3808
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-07
  • 修回日期:  2022-06-24
  • 上网日期:  2022-10-10
  • 刊出日期:  2022-10-20

/

返回文章
返回