搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海面随机起伏对噪声场空间特性的影响规律

周建波 朴胜春 刘亚琴 祝捍皓

引用本文:
Citation:

海面随机起伏对噪声场空间特性的影响规律

周建波, 朴胜春, 刘亚琴, 祝捍皓

Ocean surface wave effect on the spatial characteristics of ambient noise

Zhou Jian-Bo, Piao Sheng-Chun, Liu Ya-Qin, Zhu Han-Hao
PDF
导出引用
  • 对于1 kHz以上声波,海面起伏会对浅海声传播产生显著影响,现有的噪声预报模型在建模过程中基本没有考虑海面起伏的影响.针对这一问题,本文基于传输理论建立了随机起伏界面下噪声场垂直相关性和指向性模型,仿真分析了海面起伏对噪声强度、垂直相关性与指向性的影响.结果表明,对于表面噪声,海面随机起伏使声波能量从中间阶简正波向低阶和高阶简正波转移,而对噪声强度起主要贡献的一般是中间阶简正波,所以海面起伏使得噪声强度减弱;简正波之间能量的耦合导致垂直平面上不同掠射角方向上到达的声波响应发生变化,经由海面反射大掠射角到达的声波响应以及中小角度到达的声波响应变弱,而经由海底反射大掠射角到达的声波响应变强;海面随机起伏还会扰动各阶简正波相位,使不同阶简正波互相关性变弱,致使噪声场的空间相关性也变弱.
    The ocean ambient noise field experiences a stochastic process of many such noise sources and the respective interactions of their wave fields with the waveguide boundaries. At frequencies of about 1 kHz and higher, forward scattering from surface wave can strongly affect shallow water sound propagation. However, most of the available ambient forecasting models do not consider the effects of multiple forward scattering from surface wave. Therefore, there is a need for an accurate method of predicting ambient noises at middle and high-frequency which can account for surface scatterings. Aiming at such a requirement, a propagation model based on transport theory method is described which yields the second-order moment of the acoustic field. Monte Carlo simulations of acoustic propagation loss are employed to validate the transport theory method. The mode number dependence of mode coupling phenomenon is demonstrated at 1000 Hz via the competing effects of mode coupling and attenuation ranges. Low and middle propagating modes are seen to have a smaller coupling range than the attenuation range, allowing mode coupling effects to take precedence over attenuation effects. The mode energies and the coherences are also examined, and it is found that the mode coupling rate for surface wave is significant, but strongly dependent on mode number. Mode phase randomization by surface waves is found to be dominated by coupling effects. On the basis of transport theory propagation model, connecting with the properties of ambient noise sources, a spatial characteristic model for ambient noise under surface wave is presented. Further, the effects of surface wave on ambient noise intensity, vertical correlation and vertical directionality are analyzed. Simulation results show that the surface wave may result in energy transfer from medium modes to low modes and high modes, the rate of energy transfer depends on the mode energy difference. Since the medium mode plays an important role in noise intensity, the noise intensity decreases with the increase of surface wave. In addition to noise intensity, the vertical correlation of ambient noise also decreases due to mode phase randomization by surface wave. Besides, mode coupling can also lead to a change of vertical beam intensity distribution, positive high-angle beams associated with direct, surface, and bottom-surface-bounced rays become weaker, while negative high-angle beams associated with bottom bounced rays become stronger. Since the vertical directionality is sensitive to surface wave, the model can be applied to ocean surface parameter inversion. In summary, the model provided in this paper is closer to actual ocean waveguide and has future prospect in ocean acoustic engineering application.
      通信作者: 朴胜春, piaoshengchun@hrbeu.edu.cn
    • 基金项目: 国防科技重点实验室基金(批准号:9140C200103120C2001)、国家自然科学基金重点项目(批准号:11234002)和水产浙江省一流学科开放课题(批准号:20160004)资助的课题.
      Corresponding author: Piao Sheng-Chun, piaoshengchun@hrbeu.edu.cn
    • Funds: Project supported by the Science and Technology Foundation of State Key Laboratory, China(Grant No. 9140C200103120C2001), the National Natural Science Foundation of China(Grant No. 11234002), and the Open Foundation from Fishery Sciences in the First-class Subjects of Zhejiang, China(Grant No. 20160004).
    [1]

    Guo X Y, Li F, Tie G P 2014 Physics 43 723 (in Chinese)[郭新毅, 李凡, 铁广鹏2014物理43 723]

    [2]

    Buckingham M J, Jones S A 1987 J. Acoust. Soc. Am. 81 938

    [3]

    Harrison C H, Simons D G 2002 J. Acoust. Soc. Am. 112 1377

    [4]

    Lin J H, Chang D Q, Ma L, Li X J, Jiang G J 2001 Acta Acust. 26 217 (in Chinese)[林建恒, 常道庆, 马力, 李学军, 蒋国建2001声学学报26 217]

    [5]

    Arnaud D, Eric L, Mickael T 2003 J. Acoust. Soc. Am. 113 2973

    [6]

    Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732

    [7]

    Chapman D M 1989 J. Acoust. Soc. Am. 85 648

    [8]

    Kuperman W A, Ingenito F J 1980 J. Acoust. Soc. Am. 67 1988

    [9]

    Carey W M 1986 J. Acoust. Soc. Am. 80 1523

    [10]

    Perkins J S, Kuperman W A 1993 J. Acoust. Soc. Am. 93 739

    [11]

    Harrison C H J 1997 J. Acoust. Soc. Am. 102 2655

    [12]

    Yang T C, Kwang Y 1997 J. Acoust. Soc. Am. 101 2541

    [13]

    Buckingham M J, Deane G B, Carbone N M 1995 J. Comput. Acoust. 10 101

    [14]

    Aredov A A, Furduev A V 1994 J. Acoust. Phys. 40 176

    [15]

    Huang Y W, Yang S E, Piao S C 2009 J. Harbin Engineer. Univ. 1 1209 (in Chinese)[黄益旺, 杨士莪, 朴胜春2009哈尔滨工程大学学报1 1209]

    [16]

    Huang Y W, Yang S E 2010 J. Harbin Engineer. Univ. 2 137 (in Chinese)[黄益旺, 杨士莪2010哈尔滨工程大学学报2 137]

    [17]

    Tie G P, Guo X Y 2014 Tech. Acous. 33 209 (in Chinese)[铁广鹏, 郭新毅2014声学技术33 209]

    [18]

    Lin J H, Gao T F 2003 Tech. Acous. 22 119 (in Chinese)[林建恒, 高天赋2003声学技术22 119]

    [19]

    Sun J P, Yang J, Lin J H, Jiang G J, Yi X J, Jiang P F 2016 Acta Phys. Sin. 65 124301 (in Chinese)[孙军平, 杨军, 林建恒, 蒋国健, 衣雪娟, 江鹏飞2016物理学报65 124301]

    [20]

    He L, Li Z L, Zhang R H, Peng Z H 2008 Chin. Phys. Lett. 25 582

    [21]

    Guy V N, Jorge C N 1994 J. Acoust. Soc. Am. 99 2013

    [22]

    Kuperman W A, Ingenito F 1977 J. Acoust. Soc. Am. 61 1178

    [23]

    Rouseff D, Ewart T E 1995 J. Acoust. Soc. Am. 98 3397

    [24]

    Thorsos E I, Elam F S, Hefner W T, Reynolds B T, Stephen A R, Yang J 2010 Second International Shallow-Water Conference ShangHai, China, September 16-20, 2009 p99

    [25]

    Thorsos E I, Henyey F S, Elam W T, Reynolds S A, Williams K L 2004 High Frequency Ocean Acoustics California, America, March 1-5, 2004 p132

    [26]

    Colosi J A, Morozov A K 2009 J. Acoust. Soc. Am. 126 1026

    [27]

    Kaustubha R, John A C 2015 J. Acoust. Soc. Am. 137 2950

    [28]

    Creamer D B 1996 J. Acoust. Soc. Am. 99 2825

    [29]

    Westwood E K, Tindle C T, Chapman N R 1996 J. Acoust. Soc. Am. 100 3631

  • [1]

    Guo X Y, Li F, Tie G P 2014 Physics 43 723 (in Chinese)[郭新毅, 李凡, 铁广鹏2014物理43 723]

    [2]

    Buckingham M J, Jones S A 1987 J. Acoust. Soc. Am. 81 938

    [3]

    Harrison C H, Simons D G 2002 J. Acoust. Soc. Am. 112 1377

    [4]

    Lin J H, Chang D Q, Ma L, Li X J, Jiang G J 2001 Acta Acust. 26 217 (in Chinese)[林建恒, 常道庆, 马力, 李学军, 蒋国建2001声学学报26 217]

    [5]

    Arnaud D, Eric L, Mickael T 2003 J. Acoust. Soc. Am. 113 2973

    [6]

    Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732

    [7]

    Chapman D M 1989 J. Acoust. Soc. Am. 85 648

    [8]

    Kuperman W A, Ingenito F J 1980 J. Acoust. Soc. Am. 67 1988

    [9]

    Carey W M 1986 J. Acoust. Soc. Am. 80 1523

    [10]

    Perkins J S, Kuperman W A 1993 J. Acoust. Soc. Am. 93 739

    [11]

    Harrison C H J 1997 J. Acoust. Soc. Am. 102 2655

    [12]

    Yang T C, Kwang Y 1997 J. Acoust. Soc. Am. 101 2541

    [13]

    Buckingham M J, Deane G B, Carbone N M 1995 J. Comput. Acoust. 10 101

    [14]

    Aredov A A, Furduev A V 1994 J. Acoust. Phys. 40 176

    [15]

    Huang Y W, Yang S E, Piao S C 2009 J. Harbin Engineer. Univ. 1 1209 (in Chinese)[黄益旺, 杨士莪, 朴胜春2009哈尔滨工程大学学报1 1209]

    [16]

    Huang Y W, Yang S E 2010 J. Harbin Engineer. Univ. 2 137 (in Chinese)[黄益旺, 杨士莪2010哈尔滨工程大学学报2 137]

    [17]

    Tie G P, Guo X Y 2014 Tech. Acous. 33 209 (in Chinese)[铁广鹏, 郭新毅2014声学技术33 209]

    [18]

    Lin J H, Gao T F 2003 Tech. Acous. 22 119 (in Chinese)[林建恒, 高天赋2003声学技术22 119]

    [19]

    Sun J P, Yang J, Lin J H, Jiang G J, Yi X J, Jiang P F 2016 Acta Phys. Sin. 65 124301 (in Chinese)[孙军平, 杨军, 林建恒, 蒋国健, 衣雪娟, 江鹏飞2016物理学报65 124301]

    [20]

    He L, Li Z L, Zhang R H, Peng Z H 2008 Chin. Phys. Lett. 25 582

    [21]

    Guy V N, Jorge C N 1994 J. Acoust. Soc. Am. 99 2013

    [22]

    Kuperman W A, Ingenito F 1977 J. Acoust. Soc. Am. 61 1178

    [23]

    Rouseff D, Ewart T E 1995 J. Acoust. Soc. Am. 98 3397

    [24]

    Thorsos E I, Elam F S, Hefner W T, Reynolds B T, Stephen A R, Yang J 2010 Second International Shallow-Water Conference ShangHai, China, September 16-20, 2009 p99

    [25]

    Thorsos E I, Henyey F S, Elam W T, Reynolds S A, Williams K L 2004 High Frequency Ocean Acoustics California, America, March 1-5, 2004 p132

    [26]

    Colosi J A, Morozov A K 2009 J. Acoust. Soc. Am. 126 1026

    [27]

    Kaustubha R, John A C 2015 J. Acoust. Soc. Am. 137 2950

    [28]

    Creamer D B 1996 J. Acoust. Soc. Am. 99 2825

    [29]

    Westwood E K, Tindle C T, Chapman N R 1996 J. Acoust. Soc. Am. 100 3631

  • [1] 邓玉鑫, 刘雄厚, 杨益新. 浅海环境中用于目标深度属性判别的线谱起伏特征量分析. 物理学报, 2024, 73(13): 134301. doi: 10.7498/aps.73.20231911
    [2] 柳云峰, 李整林, 秦继兴, 吴双林, 王梦圆, 周江涛. 东印度洋海域风和降雨对环境噪声的影响. 物理学报, 2022, 71(20): 204303. doi: 10.7498/aps.71.20220615
    [3] 任超, 黄益旺, 夏峙. 宽频带海洋环境噪声矢量场空间相关特性建模. 物理学报, 2022, 71(2): 024301. doi: 10.7498/aps.71.20211518
    [4] 刘代, 李整林, 刘若芸. 浅海周期起伏海底环境下的声传播. 物理学报, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [5] 任超, 黄益旺, 夏峙. 宽频带海洋环境噪声矢量场空间相关特性建模. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211518
    [6] 蒋光禹, 孙超, 李沁然. 涡旋对深海风成噪声垂直空间特性的影响. 物理学报, 2020, 69(14): 144301. doi: 10.7498/aps.69.20200059
    [7] 蒋光禹, 孙超, 谢磊, 刘雄厚. 表面声道对深海风成噪声垂直空间特性的影响规律. 物理学报, 2019, 68(2): 024302. doi: 10.7498/aps.68.20181794
    [8] 李国倡, 李盛涛. 空间电子辐射环境中绝缘介质电荷沉积特性及陷阱参数研究综述. 物理学报, 2019, 68(23): 239401. doi: 10.7498/aps.68.20191252
    [9] 李赫, 郭新毅, 马力. 利用海洋环境噪声空间特性估计浅海海底分层结构及地声参数. 物理学报, 2019, 68(21): 214303. doi: 10.7498/aps.68.20190824
    [10] 江鹏飞, 林建恒, 孙军平, 衣雪娟. 考虑噪声源深度分布的海洋环境噪声模型及地声参数反演. 物理学报, 2017, 66(1): 014306. doi: 10.7498/aps.66.014306
    [11] 夏麾军, 马远良, 刘亚雄. 海洋环境噪声场对称性分析及噪声消除方法. 物理学报, 2016, 65(14): 144302. doi: 10.7498/aps.65.144302
    [12] 焦尚彬, 任超, 李鹏华, 张青, 谢国. 乘性和加性α稳定噪声环境下的过阻尼单稳随机共振现象. 物理学报, 2014, 63(7): 070501. doi: 10.7498/aps.63.070501
    [13] 马靖杰, 夏辉, 唐刚. 含关联噪声的空间分数阶随机生长方程的动力学标度行为研究. 物理学报, 2013, 62(2): 020501. doi: 10.7498/aps.62.020501
    [14] 焦尚彬, 任超, 黄伟超, 梁炎明. 稳定噪声环境下多频微弱信号检测的参数诱导随机共振现象. 物理学报, 2013, 62(21): 210501. doi: 10.7498/aps.62.210501
    [15] 钭斐玲, 胡延庆, 黎勇, 樊瑛, 狄增如. 空间网络上的随机游走. 物理学报, 2012, 61(17): 178901. doi: 10.7498/aps.61.178901
    [16] 张广丽, 吕希路, 康艳梅. 稳定噪声环境下过阻尼系统中的参数诱导随机共振现象. 物理学报, 2012, 61(4): 040501. doi: 10.7498/aps.61.040501
    [17] 张永鹏, 刘国治, 邵浩, 杨占峰, 宋志敏, 林郁正. 一维漂移空间内强流电子束的稳态传输特性. 物理学报, 2009, 58(10): 6973-6978. doi: 10.7498/aps.58.6973
    [18] 曹觉能, 郭 旗. 不同非局域程度条件下空间光孤子的传输特性. 物理学报, 2005, 54(8): 3688-3693. doi: 10.7498/aps.54.3688
    [19] 江金环, 王永龙, 李子平. 稳态光折变空间孤子传输的量子理论. 物理学报, 2004, 53(12): 4070-4074. doi: 10.7498/aps.53.4070
    [20] 唐应吾. 具有随机起伏表面的正声速梯度浅海中的简正波声场. 物理学报, 1976, 25(6): 481-486. doi: 10.7498/aps.25.481
计量
  • 文章访问数:  6793
  • PDF下载量:  350
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-22
  • 修回日期:  2016-10-09
  • 刊出日期:  2017-01-05

/

返回文章
返回