搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境噪声对双“引力猫态”系统量子速率极限时间与量子失协动力学的影响

代有成 韩伟 张英杰

引用本文:
Citation:

环境噪声对双“引力猫态”系统量子速率极限时间与量子失协动力学的影响

代有成, 韩伟, 张英杰

Effects of ambient noise on quantum speed limit time and quantum discord dynamics of a double ‘gravitational cat state’ system

Dai You-Cheng, Han Wei, Zhang Ying-Jie
PDF
导出引用
  • 在环境噪声影响下,考虑了一对分别被限制在双势阱中通过引力相互作用耦合的有质量粒子系统的量子态动力学行为。采用几何量子失协的方法,研究了稳定经典场与衰减场噪声对该有质量粒子系统量子态关联动力学的影响;用量子速率极限时间来描述量子态演化加速的潜力,结果发现:改变系统与环境各项参数可以调控量子速率极限时间,实现有质量粒子系统量子态动力学演化的加速。增强两粒子间的引力耦合强度能加速量子态演化;衰减场的衰减率在一定程度上也能调节系统量子速率极限时间从而达到加速量子态演化的目的。引力耦合强度会影响两粒子系统量子失协振荡的频率。值得注意的是,在衰减场噪声影响下,有质量粒子系统量子失协与量子速率极限时间相对应地表现出随时间的振荡行为,量子失协的增加对应着量子速率极限时间的减小,即系统量子失协的增加有利于量子态演化的加速。
    The exploration of the quantum nature of gravity has always been the focus of academic research. In this work, we consider a double ‘gravitational cat state’ quantum system consisting of a pair of massive particles coupled by gravitational interaction confined in their respective double potential Wells. Specifically, we model the double ‘gravitational cat state’ system as a two-qubit system, consider that the system is initially in the two-qubit Bell state, and study the influence of stable classical field and decayed field noise on the quantum speed limit time (QSLT) and trace distance discord (TDD) dynamics of the double ‘gravitational cat state’. The results show that the QSLT can be controlled by changing the parameters of the system and the environment, and the quantum state dynamics evolution of the system with massive particles can be accelerated. The quantum state evolution can be accelerated by increasing the gravitational coupling intensity between the two massive particles. The decay rate of the decaying field can also regulate the QSLT of the system to a certain extent, so as to accelerate the quantum state evolution, as shown in Fig. 8(a). Under the influence of decaying field noise, it is worth noting that the intensity of gravitational coupling affects the frequency of quantum discord oscillations in this two-particle system. The QSLT shows an oscillating trend with time, rapidly increases to a certain value in a short period of time, then begins to decline, and then oscillates until it reaches a stable value. That is to say, the evolution of quantum states goes through an oscillatory cycle of first deceleration and then acceleration until the evolution rate becomes stable after a certain period of time. At the same time, there are similar oscillations in the dynamics of quantum discord. Moreover, by comparing these two, it is found that the QSLT decreases in the process of the system's quantum discord increase. When the discord oscillation has regularity, QSLT tends to a certain value, and the quantum discord of the double ‘gravitational cat state’ system has a certain relationship with the QSLT, as shown in Fig. 8(b). In other words, quantum discord will affect the rate of quantum state evolution to some extent, and the increase of quantum discord between systems will be more conducive to the evolution of quantum states.
  • [1]

    Marletto C, Vedral V 2017 NPJ Quantum Inf. 3, 29

    [2]

    Rovelli C 2021 Universe.7, 439

    [3]

    Bose S, Mazumdar A, Schut M, Toroš M 2022 Phys. Rev. D 105 106028

    [4]

    Carlesso M, Bassi A, Paternostro M, Ulbricht H 2019 New J. Phys. 21 093052

    [5]

    Miki D, Matsumura A, Yamamoto K 2021 Phys. Rev. D 103 026017

    [6]

    Belenchia A, Wald R M, Giacomini F, Castro-Ruiz E, Časlav Brukner, Aspelmeyer M 2018 Phys. Rev. D98 126009

    [7]

    Bose S, Mazumdar A, Morley G W, Ulbricht H, Toroš M, Paternostro M, Geraci A A, Barker P F, Kim M S, Milburn G 2017 Phys. Rev. Lett. 119 240401

    [8]

    Marletto C, Vedral V 2017 Phys. Rev. Lett. 119 240402

    [9]

    Carney D, Stamp P. C. E, Taylor J. M 2019 Class. Quantum Grav. 36 034001

    [10]

    Cataño-Lopez S B, Santiago-Condori J G, Edamatsu K, Matsumoto N 2020 Phys. Rev. Lett. 124221102

    [11]

    Matsumoto N, Cataño-Lopez S B, Sugawara M, Suzuki S, Abe N, Komori K, Michimura Y, Aso Y, Edamatsu K 2019 Phys. Rev. Lett. 122 071101

    [12]

    Anastopoulos C, Hu B L 2020 Class. Quantum Grav. 37 235012

    [13]

    Dahbi Z, Rahman A U, Mansour M 2023 Physica A 609 128333

    [14]

    Rojas M, Lobo I P 2023 Universe9 71

    [15]

    Hadipour M, Haseli S, 2024 Europhys. Lett. 147 29003

    [16]

    Haddadi S, Ghominejad M, Czerwinski A 2024 Eur. Phys. J. C 84 670

    [17]

    Shahandeh F, Lund A P, Ralph T C 2019 Phys. Rev. A 99 052303

    [18]

    Maleki Y, Scully M O, Zheltikov A M 2021 Phys. Rev. A 104 053712

    [19]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222

    [20]

    Cruz C, Anka M F, Reis M S, Bachelard R, Santos A C 2022 Quantum Sci. Technol. 7 025020

    [21]

    Gisin N, Thew R 2007 Nat. Photon. 1 165

    [22]

    Mansour M, Dahbi Z 2020 Int. J. Theor. Phys 59 3876

    [23]

    Montealegre J D, Paula F M, Saguia A, Sarandy M S 2013 Phys. Rev. A 87 042115

    [24]

    Paula F M, Oliveira T R D, Sarandy M S 2013 Phys. Rev. A 87 064101

    [25]

    Ciccarello F, Tufarelli T, Giovannetti V 2014 New J. Phys. 16 013038

    [26]

    Anastopoulos C, Hu B L 2020 Class. Quantum Grav. 37 235012

    [27]

    Rahman A U, Liu A X, Haddadi S, Qiao C F 2023 ArXiv: 2308.12536

    [28]

    Blanes S, Casas F, Oteo J.A, Ros J 2009 Phys. Rep. 470 151

    [29]

    Taddei M M, Escher B M, Davidovich L, Matos Filho R L D 2013 Phys. Rev. Lett. 110 050402

    [30]

    Deffner S, Lutz E 2013 Phys. Rev. Lett. 111 010402

    [31]

    Zhang Y J, Han W, Xia Y J, Cao J P, Fan H 2014 Sci. Rep. 4 4890

    [32]

    Henderson L, Vedral V 2001J. Phys. A Math. Gen 34 6899

    [33]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [34]

    Modi K, Paterek T, Son W, Vedral V, Williamson M 2010 Phys. Rev. Lett. 104 080501

    [35]

    Dakić B, Vedral V, Brukner Č 2010 Phys. Rev. Lett. 105 190502

    [36]

    Hu M L, Hu X Y, Wang J C, Peng Y, Zhang Y R, Fan H 2018 Phys. Rep. 762-764

  • [1] 陈若凡. 时间演化矩阵乘积算符方法及其在量子开放系统中的应用. 物理学报, doi: 10.7498/aps.72.20222267
    [2] 张禧征, 王鹏, 张坤亮, 杨学敏, 宋智. 非厄米临界动力学及其在量子多体系统中的应用. 物理学报, doi: 10.7498/aps.71.20220914
    [3] 贺志, 蒋登魁, 李艳. 一种与开放系统初态无关的非马尔科夫度量. 物理学报, doi: 10.7498/aps.71.20221053
    [4] 张金峰, 阿拉帕提·阿不力米提, 杨帆, 艾克拜尔·阿木提江, 唐诗生, 艾合买提·阿不力孜. 不同外加磁场中Kaplan-Shekhtman-Entin-Wohlman-Aharony相互作用对量子失协非马尔科夫演化的影响. 物理学报, doi: 10.7498/aps.70.20211277
    [5] 程景, 单传家, 刘继兵, 黄燕霞, 刘堂昆. Tavis-Cummings模型中的几何量子失协特性. 物理学报, doi: 10.7498/aps.67.20172699
    [6] 林惇庆, 朱泽群, 王祖俭, 徐学翔. 相位型三头薛定谔猫态的量子统计属性. 物理学报, doi: 10.7498/aps.66.104201
    [7] 苟立丹, 王晓茜. 杨-巴克斯特自旋1/2链模型的量子关联研究. 物理学报, doi: 10.7498/aps.64.070302
    [8] 王丹琴, 何创创. 双自旋系统中的量子失协问题研究. 物理学报, doi: 10.7498/aps.64.043403
    [9] 李锐奇, 卢道明. 原子与耦合腔相互作用系统中的量子失协. 物理学报, doi: 10.7498/aps.63.030301
    [10] 卢道明, 邱昌东. 弱相干场原子-腔-光纤系统中的量子失协. 物理学报, doi: 10.7498/aps.63.110303
    [11] 谢美秋, 郭斌. 不同磁场环境下Heisenberg XXZ自旋链中的热量子失协. 物理学报, doi: 10.7498/aps.62.110303
    [12] 杨阳, 王安民. 与Ising链耦合的中心双量子比特系统的量子关联. 物理学报, doi: 10.7498/aps.62.130305
    [13] 袁晓娟, 赵邦宇, 陈淑霞, 孔祥木. 次近邻作用对随机量子Ising系统动力学性质的影响. 物理学报, doi: 10.7498/aps.59.1499
    [14] 李 宏, 张永强, 程 杰, 王鹿霞, 刘德胜. 飞秒激光控制的量子分子动力学研究——多维三能级系统. 物理学报, doi: 10.7498/aps.56.3589
    [15] 邵常贵, 肖俊华, 邵亮, 邵丹, 陈贻汉, 潘贵军. 扩展的纽结量子引力态. 物理学报, doi: 10.7498/aps.51.1467
    [16] 张飞舟, 王 矫, 顾 雁. 量子混沌系统本征态的统计非遍历性及其半经典极限. 物理学报, doi: 10.7498/aps.48.2169
    [17] 张文忠, 王顺金. SU(3)线性非自治量子系统的代数动力学求解. 物理学报, doi: 10.7498/aps.46.209
    [18] 左维, 王顺金, A.Weiguny, 李福利. SU(1,1)线性非自治量子系统的代数动力学求解. 物理学报, doi: 10.7498/aps.44.1184
    [19] 左维, 王顺金. 代数动力学与SU(2)线性非自治量子系统. 物理学报, doi: 10.7498/aps.44.1177
    [20] 阎沐霖, 郭汉英. 有挠量子引力和无鬼de Sitter引力(Ⅰ)——线性协变规范下的有挠引力. 物理学报, doi: 10.7498/aps.33.1377
计量
  • 文章访问数:  34
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-25

/

返回文章
返回