-
在环境噪声影响下,考虑了一对分别被限制在双势阱中通过引力相互作用耦合的有质量粒子系统的量子态动力学行为。采用几何量子失协的方法,研究了稳定经典场与衰减场噪声对该有质量粒子系统量子态关联动力学的影响;用量子速率极限时间来描述量子态演化加速的潜力,结果发现:改变系统与环境各项参数可以调控量子速率极限时间,实现有质量粒子系统量子态动力学演化的加速。增强两粒子间的引力耦合强度能加速量子态演化;衰减场的衰减率在一定程度上也能调节系统量子速率极限时间从而达到加速量子态演化的目的。引力耦合强度会影响两粒子系统量子失协振荡的频率。值得注意的是,在衰减场噪声影响下,有质量粒子系统量子失协与量子速率极限时间相对应地表现出随时间的振荡行为,量子失协的增加对应着量子速率极限时间的减小,即系统量子失协的增加有利于量子态演化的加速。The exploration of the quantum nature of gravity has always been the focus of academic research. In this work, we consider a double ‘gravitational cat state’ quantum system consisting of a pair of massive particles coupled by gravitational interaction confined in their respective double potential Wells. Specifically, we model the double ‘gravitational cat state’ system as a two-qubit system, consider that the system is initially in the two-qubit Bell state, and study the influence of stable classical field and decayed field noise on the quantum speed limit time (QSLT) and trace distance discord (TDD) dynamics of the double ‘gravitational cat state’. The results show that the QSLT can be controlled by changing the parameters of the system and the environment, and the quantum state dynamics evolution of the system with massive particles can be accelerated. The quantum state evolution can be accelerated by increasing the gravitational coupling intensity between the two massive particles. The decay rate of the decaying field can also regulate the QSLT of the system to a certain extent, so as to accelerate the quantum state evolution, as shown in Fig. 8(a). Under the influence of decaying field noise, it is worth noting that the intensity of gravitational coupling affects the frequency of quantum discord oscillations in this two-particle system. The QSLT shows an oscillating trend with time, rapidly increases to a certain value in a short period of time, then begins to decline, and then oscillates until it reaches a stable value. That is to say, the evolution of quantum states goes through an oscillatory cycle of first deceleration and then acceleration until the evolution rate becomes stable after a certain period of time. At the same time, there are similar oscillations in the dynamics of quantum discord. Moreover, by comparing these two, it is found that the QSLT decreases in the process of the system's quantum discord increase. When the discord oscillation has regularity, QSLT tends to a certain value, and the quantum discord of the double ‘gravitational cat state’ system has a certain relationship with the QSLT, as shown in Fig. 8(b). In other words, quantum discord will affect the rate of quantum state evolution to some extent, and the increase of quantum discord between systems will be more conducive to the evolution of quantum states.
-
Keywords:
- open system dynamics /
- quantum speed limits time /
- quantum discord /
- gravitational cat state
-
[1] Marletto C, Vedral V 2017 NPJ Quantum Inf. 3, 29
[2] Rovelli C 2021 Universe.7, 439
[3] Bose S, Mazumdar A, Schut M, Toroš M 2022 Phys. Rev. D 105 106028
[4] Carlesso M, Bassi A, Paternostro M, Ulbricht H 2019 New J. Phys. 21 093052
[5] Miki D, Matsumura A, Yamamoto K 2021 Phys. Rev. D 103 026017
[6] Belenchia A, Wald R M, Giacomini F, Castro-Ruiz E, Časlav Brukner, Aspelmeyer M 2018 Phys. Rev. D98 126009
[7] Bose S, Mazumdar A, Morley G W, Ulbricht H, Toroš M, Paternostro M, Geraci A A, Barker P F, Kim M S, Milburn G 2017 Phys. Rev. Lett. 119 240401
[8] Marletto C, Vedral V 2017 Phys. Rev. Lett. 119 240402
[9] Carney D, Stamp P. C. E, Taylor J. M 2019 Class. Quantum Grav. 36 034001
[10] Cataño-Lopez S B, Santiago-Condori J G, Edamatsu K, Matsumoto N 2020 Phys. Rev. Lett. 124221102
[11] Matsumoto N, Cataño-Lopez S B, Sugawara M, Suzuki S, Abe N, Komori K, Michimura Y, Aso Y, Edamatsu K 2019 Phys. Rev. Lett. 122 071101
[12] Anastopoulos C, Hu B L 2020 Class. Quantum Grav. 37 235012
[13] Dahbi Z, Rahman A U, Mansour M 2023 Physica A 609 128333
[14] Rojas M, Lobo I P 2023 Universe9 71
[15] Hadipour M, Haseli S, 2024 Europhys. Lett. 147 29003
[16] Haddadi S, Ghominejad M, Czerwinski A 2024 Eur. Phys. J. C 84 670
[17] Shahandeh F, Lund A P, Ralph T C 2019 Phys. Rev. A 99 052303
[18] Maleki Y, Scully M O, Zheltikov A M 2021 Phys. Rev. A 104 053712
[19] Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222
[20] Cruz C, Anka M F, Reis M S, Bachelard R, Santos A C 2022 Quantum Sci. Technol. 7 025020
[21] Gisin N, Thew R 2007 Nat. Photon. 1 165
[22] Mansour M, Dahbi Z 2020 Int. J. Theor. Phys 59 3876
[23] Montealegre J D, Paula F M, Saguia A, Sarandy M S 2013 Phys. Rev. A 87 042115
[24] Paula F M, Oliveira T R D, Sarandy M S 2013 Phys. Rev. A 87 064101
[25] Ciccarello F, Tufarelli T, Giovannetti V 2014 New J. Phys. 16 013038
[26] Anastopoulos C, Hu B L 2020 Class. Quantum Grav. 37 235012
[27] Rahman A U, Liu A X, Haddadi S, Qiao C F 2023 ArXiv: 2308.12536
[28] Blanes S, Casas F, Oteo J.A, Ros J 2009 Phys. Rep. 470 151
[29] Taddei M M, Escher B M, Davidovich L, Matos Filho R L D 2013 Phys. Rev. Lett. 110 050402
[30] Deffner S, Lutz E 2013 Phys. Rev. Lett. 111 010402
[31] Zhang Y J, Han W, Xia Y J, Cao J P, Fan H 2014 Sci. Rep. 4 4890
[32] Henderson L, Vedral V 2001J. Phys. A Math. Gen 34 6899
[33] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901
[34] Modi K, Paterek T, Son W, Vedral V, Williamson M 2010 Phys. Rev. Lett. 104 080501
[35] Dakić B, Vedral V, Brukner Č 2010 Phys. Rev. Lett. 105 190502
[36] Hu M L, Hu X Y, Wang J C, Peng Y, Zhang Y R, Fan H 2018 Phys. Rep. 762-764
计量
- 文章访问数: 34
- PDF下载量: 2
- 被引次数: 0