-
Quantum key distribution (QKD) has been extensively studied for practical applications. Advantage distillation (AD) represents a key technique to extract highly correlated bit pairs from weakly correlated ones, improving QKD protocol performance, particularly in large-error scenarios. However, its practical implementation remains underexplored. This study integrates AD into the three-intensity decoy-state BB84 protocol and demonstrates its performance on a high-speed phase-encoding platform. The experimental system employs asymmetric Mach-Zehnder interferometers (AMZI) fabricated on a silicon dioxide optical waveguide chip for phase encoding, benefiting from its low coupling loss and minimal waveguide transmission loss. Phase-randomized weak coherent pulses, generated by a distributed feedback laser at 625 MHz, are modulated into decoy states of varying intensities. The signals are encoded via an AMZI and attenuated to single-photon levels before transmission. At the receiver, another AMZI demodulates the signals, detected by avalanche photodiodes in gated mode. Experiments conducted at 50 km and 105 km demonstrated secure key rates of 104 kbps and 59 bps, respectively. Results at shorter distances closely matched theoretical predictions, while slight deviations at 105 km were attributed to signal attenuation and noise. Despite these challenges, the 105 km results highlight the effectiveness of AD in enhancing secure key rates at large-error scenario. This study confirms the potential of AD in extending secure communication range of QKD. By leveraging the high integration and scalability of silicon dioxide photonic chips, the proposed system provides a foundation for large-scale QKD deployment, paving the way for advanced protocols and real-world quantum networks.
-
[1] Bennett C H, Brassard G 2014 Theoret. Comput. Sci. 560 7
[2] Lo H K, Chau H F 1999 Science 283 2050
[3] Shor P W 2000 Phys. Rev. Lett. 85 441
[4] Mayers D 2001 Journal of the ACM 48 3
[5] Wang X B 2005 Phy. Rev. Lett. 94 230503
[6] Lo H K, Ma X, Chen K 2005 Phy. Rev. Lett. 94 230504
[7] Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503
[8] Braunstein S L, Pirandola S 2012 Phys. Rev. Lett. 108 130502
[9] Lucamarini M, Yuan Z L, Dynes J F, Shields A 2018 Nature 557 400
[10] Wang X B, Yu Z W, Hu X L 2018 Phys. Rev. A 98 062323
[11] Cui C, Yin Z Q, Wang R, Chen W, Wang S, Guo G C, Han Z F 2019 Phys. Rev. Applied 11 034053
[12] Curty M, Azuma K, Lo H K 2019 npj Quantum Inf. 5 64
[13] Ma X, Zeng P, Zhou 2018 Phys. Rev. X 8 031043
[14] Zeng P, Zhou H Y, Wu W, Ma X 2022 Nat. Commun. 13 3903
[15] Xie Y M, Lu Y S, Weng C X, Yin H L, Chen Z B 2022 PRX Quantum 3 020315
[16] Maurer U M 1999 IEEE Trans. Inf. Theory 39 733
[17] R. Renner 2008 Int. J. Quantum Inf. 6 1
[18] Tan E Y Z, Lim C C W, Renner R 2020 Phys. Rev. Lett. 124 020502
[19] Li H W, Zhang C M, Jiang M S, Cai Q Y 2022 Commun. Phys. 5 53
[20] Wang R Q, Zhang C M, Yin Z Q, Li H W, Wang S, Chen W, Guo G C, Han Z F 2022 New J. Phys. 24 073049
[21] Li H W, Wang R Q, Zhang C M, Cai Q Y 2023 Quantum. 7 1201
[22] Zhu J R, Zhang C. M, Wang R, Li H W 2023 Opt. Lett. 48 303
[23] Zhang K, Liu J, Ding H, Zhang C H, Wang Q 2023 Entropy. 25 1174
[24] Hu L W, Zhang C M, Li H W 2023 Quantum Inf. Process. 22 77
[25] Boaron A, Boso G, Rusca D, Vulliez C, Autebert C, Caloz M, Perrenoud M, Gras G, Bussiѐres F, Li M J, Nolan D, Martin A, Zbinden H 2018 Phys. Rev. Lett. 121 190502
[26] Yuan Z, Plews A, Takahashi R, Doi K, Tam W, Sharpe A, Dixon A, Lavelle E, Dynes J, Murakami A, Kujiraoka M, Lucamarini M, Tanizawa Y, Sato H, Shields A 2018 J. Light. Technol. 36 3427
[27] Li W, Zhang L, Tan H, Lu Y C, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B, Li Q, Liu Y, Zhang Q, Peng C Z, You L, Xu F H, Pan J W 2023 Nat. Photon. 17 416
[28] Ma C X, Sacher W D, Tang Z Y, Mikkelsen J, Yang Y S, Xu F H, Thiessen T, Lo H K, Poon J K S 2016 Optica 3 1274
[29] Sibson P, Kennard J E, Stanisic S, Erven C, O’Brien J, Thompson M G 2017 Optica 4 172
[30] Wei K, Li W, Tan H, Li Y, Min H, Zhang W J, Li H, You L X, Wang Z, Jiang X, Chen T Y, Liao S K, Pen C Z, Xu F H, Pan J W 2020 Phys. Rev. X 10 031030
计量
- 文章访问数: 18
- PDF下载量: 0
- 被引次数: 0