搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

次近邻作用对随机量子Ising系统动力学性质的影响

袁晓娟 赵邦宇 陈淑霞 孔祥木

引用本文:
Citation:

次近邻作用对随机量子Ising系统动力学性质的影响

袁晓娟, 赵邦宇, 陈淑霞, 孔祥木

Effects of next-nearest-neighbor interactions on the dynamics of random quantum Ising model

Yuan Xiao-Juan, Zhao Bang-Yu, Chen Shu-Xia, Kong Xiang-Mu
PDF
导出引用
  • 利用递推关系方法在高温极限下研究了具有次近邻自旋耦合相互作用的一维随机量子Ising系统的动力学性质,求解了系统的自关联函数及谱密度.假设自旋耦合参量或横向磁场满足双高斯分布,研究发现当随机变量的标准偏差σJ(σB)较小时系统的动力学性质存在从集体模行为到中心峰值行为的交跨效应,当σJ (σB)较大时,交跨效
    The dynamics of one-dimensional random quantum Ising model with both nearest-neighbor and next-nearest-neighbor (NNN) interactions is investigated in the high temperature limit by the method of recurrence relations. Spin autocorrelations and the corresponding spectral densities of the system are calculated. Supposing that the exchange couplings (or the transverse fields) satisfy the double-Gaussian distribution, the effects of this distribution on the dynamics of the system is studied. The results show that the dynamics of the system undergoes a crossover from a collective-mode behavior to a central-peak one when the standard deviations σJ(or σB)of the random variables are small and there is no crossover when σJ(or σB)are large. Meanwhile, the effects of NNN interactions on the dynamics of the system are studied. It is found that the central-peak behavior becomes more obvious and the collective-mode behavior becomes weaker as Ki increase, especially when Ki>Ji/2(Ji and Ki are exchange couplings of the NN and NNN interactions, respectively). However, the effects are small when the NNN interactions are weak (KiJi/2).
    • 基金项目: 国家自然科学基金(批准号:10775088)和山东省自然科学基金(批准号:Y2006A05)资助的课题.
    [1]

    [1]Roldan J 1986 Physica A 136 255

    [2]

    [2]Niemeijer T 1967 Physica (Amsterdam) 36 377

    [3]

    [3]Katsura S, Horiguchi T, Suzuki M 1970 Physica (Utrecht) 46 67

    [4]

    [4]Binder K, Kob W 2005 Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics (Singapore: World Scientific)

    [5]

    [5]Plascak J A, Sá Barreto F C, Pires A S T, Goncalves L L 1983 J. Phys. C 16 49

    [6]

    [6]Watarai S, Matsubara T 1984 J. Phys. Soc. Jpn 53 3648

    [7]

    [7]Wu W, Ellman B, Rosenbaum T F, Aeppli G, Reich D H 1991 Phys. Rev. Lett. 67 2076

    [8]

    [8]Li J L, Lei S G 2008 Acta Phys. Sin. 57 5944 (in Chinese)[李嘉亮、类淑国 2008 物理学报 57 5944]

    [9]

    [9]Sen S, Hoff C N, Kuhl D E, McGrew D A 1996 Phys. Rev. B 53 3398

    [10]

    [10]Florencio J, de Alcantara Bonfim O F, Sá Barreto F C 1997 Physica A 235 523

    [11]

    [11]Qin J H, Xu S F, Fen S P 2006 Acta Phys. Sin. 55 5511 (in Chinese)[秦吉红、徐素芬、冯世平 2006 物理学报 55 5511]

    [12]

    [12]Florencio J, Sá Barreto F C 1999 Phy. Rev. B 60 9555

    [13]

    [13]Liu Z Q, Kong X M, Chen X S 2006 Phys. Rev. B 73 224412

    [14]

    [14]Xu L, Yan S L 2007 Acta Phys. Sin. 56 1691 (in Chinese)[许玲、晏世雷 2007 物理学报 56 1691]

    [15]

    [15]Nunes M E S, Florencio J 2003 Phys. Rev. B 68 014406

    [16]

    [16]Nunes M E S, Plascak J A, Florencio J 2004 Physica A 332 1

    [17]

    [17]Xu Z B, Kong X M, Liu Z Q 2008 Phys. Rev. B 77 184414

    [18]

    [18]Mezei F, Murani A P 1979 J. Magn. Magn. Mater 14 211

    [19]

    [19]Lee M H 1982 Phys. Rev. Lett. 49 1072

    [20]

    [20]Lee M H 1982 Phys. Rev. B 26 2547

    [21]

    [21]Lee M H 2000 Phys. Rev. E 62 1769

  • [1]

    [1]Roldan J 1986 Physica A 136 255

    [2]

    [2]Niemeijer T 1967 Physica (Amsterdam) 36 377

    [3]

    [3]Katsura S, Horiguchi T, Suzuki M 1970 Physica (Utrecht) 46 67

    [4]

    [4]Binder K, Kob W 2005 Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics (Singapore: World Scientific)

    [5]

    [5]Plascak J A, Sá Barreto F C, Pires A S T, Goncalves L L 1983 J. Phys. C 16 49

    [6]

    [6]Watarai S, Matsubara T 1984 J. Phys. Soc. Jpn 53 3648

    [7]

    [7]Wu W, Ellman B, Rosenbaum T F, Aeppli G, Reich D H 1991 Phys. Rev. Lett. 67 2076

    [8]

    [8]Li J L, Lei S G 2008 Acta Phys. Sin. 57 5944 (in Chinese)[李嘉亮、类淑国 2008 物理学报 57 5944]

    [9]

    [9]Sen S, Hoff C N, Kuhl D E, McGrew D A 1996 Phys. Rev. B 53 3398

    [10]

    [10]Florencio J, de Alcantara Bonfim O F, Sá Barreto F C 1997 Physica A 235 523

    [11]

    [11]Qin J H, Xu S F, Fen S P 2006 Acta Phys. Sin. 55 5511 (in Chinese)[秦吉红、徐素芬、冯世平 2006 物理学报 55 5511]

    [12]

    [12]Florencio J, Sá Barreto F C 1999 Phy. Rev. B 60 9555

    [13]

    [13]Liu Z Q, Kong X M, Chen X S 2006 Phys. Rev. B 73 224412

    [14]

    [14]Xu L, Yan S L 2007 Acta Phys. Sin. 56 1691 (in Chinese)[许玲、晏世雷 2007 物理学报 56 1691]

    [15]

    [15]Nunes M E S, Florencio J 2003 Phys. Rev. B 68 014406

    [16]

    [16]Nunes M E S, Plascak J A, Florencio J 2004 Physica A 332 1

    [17]

    [17]Xu Z B, Kong X M, Liu Z Q 2008 Phys. Rev. B 77 184414

    [18]

    [18]Mezei F, Murani A P 1979 J. Magn. Magn. Mater 14 211

    [19]

    [19]Lee M H 1982 Phys. Rev. Lett. 49 1072

    [20]

    [20]Lee M H 1982 Phys. Rev. B 26 2547

    [21]

    [21]Lee M H 2000 Phys. Rev. E 62 1769

  • [1] 张仁强, 蒋翔宇, 俞炯弛, 曾充, 宫明, 徐顺. 格点量子色动力学蒸馏算法中关联函数的计算优化. 物理学报, 2021, 70(16): 161201. doi: 10.7498/aps.70.20210030
    [2] 袁晓娟, 王辉, 赵邦宇, 赵敬芬, 明静, 耿延雷, 张凯煜. 随机纵场对一维量子Ising模型动力学性质的影响. 物理学报, 2021, 70(19): 197501. doi: 10.7498/aps.70.20210631
    [3] 陈召杭, 王德华, 程绍昊. 氢负离子在梯度电场中光剥离的波包动力学研究. 物理学报, 2015, 64(23): 233201. doi: 10.7498/aps.64.233201
    [4] 杨恒占, 钱富才, 高韵, 谢国. 随机系统的概率密度函数形状调节. 物理学报, 2014, 63(24): 240508. doi: 10.7498/aps.63.240508
    [5] 李艳. 从光晶格中释放的超冷玻色气体密度-密度关联函数研究. 物理学报, 2014, 63(6): 066701. doi: 10.7498/aps.63.066701
    [6] 柳燕, 包景东. 非各态历经噪声的产生及其应用. 物理学报, 2014, 63(24): 240503. doi: 10.7498/aps.63.240503
    [7] 杨阳, 王安民. 与Ising链耦合的中心双量子比特系统的量子关联. 物理学报, 2013, 62(13): 130305. doi: 10.7498/aps.62.130305
    [8] 王姗姗, 王德华, 黄凯云, 唐田田. H-在金属面附近光剥离的波包动力学研究. 物理学报, 2011, 60(10): 103401. doi: 10.7498/aps.60.103401
    [9] 周丽丹, 粟敬钦, 李平, 刘兰琴, 王文义, 王方, 莫磊, 程文雍, 张小民. 高功率固体激光装置光学元件“缺陷”分布的功率谱密度方法及等效求法. 物理学报, 2009, 58(9): 6279-6284. doi: 10.7498/aps.58.6279
    [10] 孙春峰. 钻石分形晶格上Ising模型的配分函数与关联函数. 物理学报, 2005, 54(8): 3768-3773. doi: 10.7498/aps.54.3768
    [11] 陈昌远, 陆法林, 孙东升, 刘成林. 一类非谐振模型势径向平均值的解析表达式及其递推关系. 物理学报, 2004, 53(4): 973-977. doi: 10.7498/aps.53.973
    [12] 王延申. 开边界六顶角模型的边界关联函数. 物理学报, 2003, 52(11): 2700-2705. doi: 10.7498/aps.52.2700
    [13] 彭志涛, 景峰, 刘兰琴, 朱启华, 陈波, 张昆, 刘华, 张清泉, 程晓峰, 蒋东镔, 刘红婕, 彭翰生. 自聚焦激光束光束质量评价的功率谱密度方法. 物理学报, 2003, 52(1): 87-90. doi: 10.7498/aps.52.87
    [14] 宋建军, 李希国. 量子能谱中的长程关联. 物理学报, 2001, 50(9): 1661-1665. doi: 10.7498/aps.50.1661
    [15] 郑瑞伦, 赵福川, 熊国明. 对确定Ising自旋系统临界点自洽集团方法的改进. 物理学报, 1997, 46(4): 724-731. doi: 10.7498/aps.46.724
    [16] 季达人, 张剑波. 三维随机点阵Ising模型的集团Monte Carlo方法模拟. 物理学报, 1993, 42(11): 1741-1746. doi: 10.7498/aps.42.1741
    [17] 滕保华. 三维Ising模型的Green函数方法处理. 物理学报, 1991, 40(5): 826-832. doi: 10.7498/aps.40.826
    [18] 马余强, 李振亚. 无规场量子Ising模型的研究. 物理学报, 1990, 39(9): 1480-1487. doi: 10.7498/aps.39.1480
    [19] 石赫, 郝柏林. 三维Ising模型的封闭近似解(Ⅳ)——配分函数的近似内插公式. 物理学报, 1981, 30(9): 1234-1241. doi: 10.7498/aps.30.1234
    [20] 何怡贞, 徐升美. 有自吸收现象时谱线强度与物质浓度的关系. 物理学报, 1958, 14(1): 54-63. doi: 10.7498/aps.14.54
计量
  • 文章访问数:  6209
  • PDF下载量:  1040
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-06
  • 修回日期:  2009-07-06
  • 刊出日期:  2010-03-15

次近邻作用对随机量子Ising系统动力学性质的影响

  • 1. (1)积成电子股份有限公司,济南 250100; (2)山东省激光偏光与信息技术重点实验室,曲阜师范大学物理工程学院,曲阜 273165; (3)山东省激光偏光与信息技术重点实验室,曲阜师范大学物理工程学院,曲阜 273165;山东大学物理学院,晶体材料国家重点实验室,经济 250100
    基金项目: 国家自然科学基金(批准号:10775088)和山东省自然科学基金(批准号:Y2006A05)资助的课题.

摘要: 利用递推关系方法在高温极限下研究了具有次近邻自旋耦合相互作用的一维随机量子Ising系统的动力学性质,求解了系统的自关联函数及谱密度.假设自旋耦合参量或横向磁场满足双高斯分布,研究发现当随机变量的标准偏差σJ(σB)较小时系统的动力学性质存在从集体模行为到中心峰值行为的交跨效应,当σJ (σB)较大时,交跨效

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回