搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从光晶格中释放的超冷玻色气体密度-密度关联函数研究

李艳

引用本文:
Citation:

从光晶格中释放的超冷玻色气体密度-密度关联函数研究

李艳

Theory of density-density correlations between ultracold Bosons released from optical lattices

Li Yan
PDF
导出引用
  • 利用量子旋转场理论详细研究了从光晶格中释放的超冷玻色气体的空间密度-密度关联函数. 由于量子旋转场理论充分考虑了光晶格中冷原子气体的粒子数涨落和相位效应,该理论能有效应用于具有强相互作用的冷原子系统,从而光晶格处于超流态到绝缘态逐渐过渡过程中的超冷原子气体的关联特性在这一理论体系下都得到了很好的描述. 结果表明:随着超冷玻色气体逐渐从绝缘态向超流态过渡,其密度-密度关联图样中连续对角斜线也逐渐向分散的尖峰过渡,理论结果与目前实验观测到的结果符合. 除此以外,上述密度-密度关联的结果中还包含了超冷原子系统量子耗散效应,相关结论与目前已有的理论和实验一致.
    The density-density correlations of ultracold Bosons released from a two-dimensional square optical lattice are investigated based on the quantum phase field U (1) rotor field. With the effects of the particle number fluctuations and the phase degrees of freedom taken into consideration, the theory can be used to describe the cold atom system with strong interaction. Using this theory, the characteristics of ultracold atom gas in the process in which the superfluid state of optical lattice transits to insulating state, are well described. The results show that in the patterns of the density-density correlations, the continuous diagonal lines gradually transit to scattered peaks. The results match the experimental ones. In addition, the effects of the quantum depletion on the density-density correlation are also included in the result, and the relevant conclusions are also consistent with the existing theoretical and experimental results.
    • 基金项目: 国家自然科学基金理论物理专项(批准号:11247299)和湖南文理学院博士启动基金(批准号:13101038)资助的课题.
    • Funds: Project supported by the "Special Program for Theoretical Physics" of the Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant No. 11247299) and the Doctoral Fund of Hunan University of Arts and Science, China (Grant No. 13101038).
    [1]

    Greiner M, Mandel O, Esslinger T Hansch T W, Bloch I 2002 Nature 415 39

    [2]

    Bloch I 2005 Nat. Phys. 1 23

    [3]

    Hen I, Rigol M 2010 Phys. Rev. A 82 043634

    [4]

    Xu Z J, Wang D M, Li Z 2007 Acta Phys. Sin. 56 3076 (in Chinese) [徐志君, 王冬梅, 李珍 2007 物理学报 56 3076]

    [5]

    Xu Z J, Chen C, Yang H S, Wu Q, Xiong H W 2004 Acta Phys. Sin. 53 2835 (in Chinese) [徐志君, 程成, 杨欢耸, 武强, 熊宏伟 2004 物理学报 53 2835]

    [6]

    Jaksh D, Bruder C, Cira J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3108

    [7]

    Kampf A P, Zimanyi G T 1993 Phys. Rev. B 47 279

    [8]

    Freeriks J K, Monien H 1996 Phys. Rev. B 53 2691

    [9]

    Elstner N, Monien H 1999 Phys. Rev. B 59 12184

    [10]

    Sheshadri K, Krishnamurthy H R, Pandit R, Ramakrishnan T V 1993 Europhys. Lett. 22 257

    [11]

    Sengupta K, Dupuis N 2005 Phys. Rev. A 71 033629

    [12]

    Spielman I B, Phillips W D, Porto J V 2007 Phys. Rev. Lett. 98 080404

    [13]

    Polak T P, Kopeć T K 2007 Phys. Rev. B 76 094503

    [14]

    Polak T P, Kopeć T K 2009 Annalen der Physik 17 947

    [15]

    Polak T P, Kopeć T K 2009 J. Phys. B 42 095302

    [16]

    Kopeć T K 2004 Phys. Rev. B 70 054518

    [17]

    Polak T P, Kopeć T K 2010 Phys. Rev. A 81 043612

    [18]

    Polak T P, Kopeć T K 2011 Phys. Rev. A 84 053613

    [19]

    Zaleski T A 2012 Phys. Rev. A 85 043611

    [20]

    Polak T P, Zaleski T A 2012 Acta Phys. Pol. A 121 1312

    [21]

    Zaleski T A, Polak T P 2011 Phys. Rev. A 83 023607

    [22]

    Capogrosso-Sansone B, Söyler S G, Prokof’ev N, Svistunov B 2008 Phys. Rev. A 77 015602

    [23]

    Teichmann N, Hinrichs D, Holthaus M, Eckardt A 2009 Phys. Rev. B 79 100503

    [24]

    Li Y Y, Cheng M T, Zhou H J, Liu S D, Wang Q Q 2005 Chin. Phys. Lett. 22 2960

    [25]

    Chen L M, Cao L, Wu D J 2005 Chin. Phys. Lett. 22 2500

    [26]

    Schellekens M, Hoppeler R, Perrin A, Gomes J V, Boiron D, Aspect A, Westbrook C I 2005 Science 310 648

    [27]

    Fölling S, Gerbier F, Widera A, Mandel O, Gericke T, Bloch I 2005 Nature 434 481

    [28]

    Spielman I B, Phillips W D, Porto J V 2007 Phys. Rev. Lett. 98 080404

    [29]

    Rom T, Best T, Oosten D, Schneider U, Fölling S, Paredes B, Bloch I 2006 Nature 444 733

    [30]

    Wang M Y, Liang J Q 2012 Chin. Phys. B 21 060305

    [31]

    Xu Z J, Liu X Y 2011 Acta Phys. Sin. 60 120305 (in Chinese) [徐志君, 刘夏吟 2011 物理学报 60 120305]

    [32]

    Xu Z J, Li P H 2007 Acta Phys. Sin. 56 5607 (in Chinese) [徐志君, 李鹏华 2007 物理学报 56 5607]

    [33]

    Huang J S, Chen H F, Xie Z W 2008 Acta Phys. Sin. 57 3435 (in Chinese) [黄劲松, 陈海峰, 谢征微 2008 物理学报 57 3435]

    [34]

    Teng F, XIe Z W 2013 Acta Phys. Sin. 62 026701 (in Chinese) [藤斐, 谢征微 2013 物理学报 62 026701]

    [35]

    Toth E, Rey A M, Blakie P B 2008 Phys. Rev. A 78 013627

    [36]

    Hu Y H, Wang J Q 2012 Chin. Phys. B 21 014203

    [37]

    Xu Z J, Zhang D M, Liu X Y 2011 Chin. Phys. Lett. 28 010305

    [38]

    Wu Z S, Zhang G 2009 Chin. Phys. Lett. 26 114208

    [39]

    Kheruntsyan K V, Jaskula J C, Deuar P, Bonneau M, Partridge G B, Ruaudel J, Lopes R, Boiron D, Westbrook C I 2012 Phys. Rev. Lett. 108 260401

    [40]

    Bouchoule I, Arzamasov M, Kheruntsyan K V, Gangardt D M 2012 Phys. Rev. A 86 033626

  • [1]

    Greiner M, Mandel O, Esslinger T Hansch T W, Bloch I 2002 Nature 415 39

    [2]

    Bloch I 2005 Nat. Phys. 1 23

    [3]

    Hen I, Rigol M 2010 Phys. Rev. A 82 043634

    [4]

    Xu Z J, Wang D M, Li Z 2007 Acta Phys. Sin. 56 3076 (in Chinese) [徐志君, 王冬梅, 李珍 2007 物理学报 56 3076]

    [5]

    Xu Z J, Chen C, Yang H S, Wu Q, Xiong H W 2004 Acta Phys. Sin. 53 2835 (in Chinese) [徐志君, 程成, 杨欢耸, 武强, 熊宏伟 2004 物理学报 53 2835]

    [6]

    Jaksh D, Bruder C, Cira J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3108

    [7]

    Kampf A P, Zimanyi G T 1993 Phys. Rev. B 47 279

    [8]

    Freeriks J K, Monien H 1996 Phys. Rev. B 53 2691

    [9]

    Elstner N, Monien H 1999 Phys. Rev. B 59 12184

    [10]

    Sheshadri K, Krishnamurthy H R, Pandit R, Ramakrishnan T V 1993 Europhys. Lett. 22 257

    [11]

    Sengupta K, Dupuis N 2005 Phys. Rev. A 71 033629

    [12]

    Spielman I B, Phillips W D, Porto J V 2007 Phys. Rev. Lett. 98 080404

    [13]

    Polak T P, Kopeć T K 2007 Phys. Rev. B 76 094503

    [14]

    Polak T P, Kopeć T K 2009 Annalen der Physik 17 947

    [15]

    Polak T P, Kopeć T K 2009 J. Phys. B 42 095302

    [16]

    Kopeć T K 2004 Phys. Rev. B 70 054518

    [17]

    Polak T P, Kopeć T K 2010 Phys. Rev. A 81 043612

    [18]

    Polak T P, Kopeć T K 2011 Phys. Rev. A 84 053613

    [19]

    Zaleski T A 2012 Phys. Rev. A 85 043611

    [20]

    Polak T P, Zaleski T A 2012 Acta Phys. Pol. A 121 1312

    [21]

    Zaleski T A, Polak T P 2011 Phys. Rev. A 83 023607

    [22]

    Capogrosso-Sansone B, Söyler S G, Prokof’ev N, Svistunov B 2008 Phys. Rev. A 77 015602

    [23]

    Teichmann N, Hinrichs D, Holthaus M, Eckardt A 2009 Phys. Rev. B 79 100503

    [24]

    Li Y Y, Cheng M T, Zhou H J, Liu S D, Wang Q Q 2005 Chin. Phys. Lett. 22 2960

    [25]

    Chen L M, Cao L, Wu D J 2005 Chin. Phys. Lett. 22 2500

    [26]

    Schellekens M, Hoppeler R, Perrin A, Gomes J V, Boiron D, Aspect A, Westbrook C I 2005 Science 310 648

    [27]

    Fölling S, Gerbier F, Widera A, Mandel O, Gericke T, Bloch I 2005 Nature 434 481

    [28]

    Spielman I B, Phillips W D, Porto J V 2007 Phys. Rev. Lett. 98 080404

    [29]

    Rom T, Best T, Oosten D, Schneider U, Fölling S, Paredes B, Bloch I 2006 Nature 444 733

    [30]

    Wang M Y, Liang J Q 2012 Chin. Phys. B 21 060305

    [31]

    Xu Z J, Liu X Y 2011 Acta Phys. Sin. 60 120305 (in Chinese) [徐志君, 刘夏吟 2011 物理学报 60 120305]

    [32]

    Xu Z J, Li P H 2007 Acta Phys. Sin. 56 5607 (in Chinese) [徐志君, 李鹏华 2007 物理学报 56 5607]

    [33]

    Huang J S, Chen H F, Xie Z W 2008 Acta Phys. Sin. 57 3435 (in Chinese) [黄劲松, 陈海峰, 谢征微 2008 物理学报 57 3435]

    [34]

    Teng F, XIe Z W 2013 Acta Phys. Sin. 62 026701 (in Chinese) [藤斐, 谢征微 2013 物理学报 62 026701]

    [35]

    Toth E, Rey A M, Blakie P B 2008 Phys. Rev. A 78 013627

    [36]

    Hu Y H, Wang J Q 2012 Chin. Phys. B 21 014203

    [37]

    Xu Z J, Zhang D M, Liu X Y 2011 Chin. Phys. Lett. 28 010305

    [38]

    Wu Z S, Zhang G 2009 Chin. Phys. Lett. 26 114208

    [39]

    Kheruntsyan K V, Jaskula J C, Deuar P, Bonneau M, Partridge G B, Ruaudel J, Lopes R, Boiron D, Westbrook C I 2012 Phys. Rev. Lett. 108 260401

    [40]

    Bouchoule I, Arzamasov M, Kheruntsyan K V, Gangardt D M 2012 Phys. Rev. A 86 033626

  • [1] 高吉明, 狄国文, 鱼自发, 唐荣安, 徐红萍, 薛具奎. 人工磁场下各向异性偶极玻色气体的量子相变. 物理学报, 2024, 73(13): 130503. doi: 10.7498/aps.73.20240376
    [2] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测. 物理学报, 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [3] 胡小华, 卢晓同, 张晓斐, 常宏. 基于原位成像技术的同步频率比对与密度频移测量. 物理学报, 2022, 71(17): 173401. doi: 10.7498/aps.71.20220600
    [4] 张志强. 简谐与光晶格复合势阱中旋转二维玻色-爱因斯坦凝聚体中的涡旋链. 物理学报, 2022, 71(22): 220304. doi: 10.7498/aps.71.20221312
    [5] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [6] 文凯, 王良伟, 周方, 陈良超, 王鹏军, 孟增明, 张靖. 超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现. 物理学报, 2020, 69(19): 193201. doi: 10.7498/aps.69.20200513
    [7] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量. 物理学报, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [8] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发. 物理学报, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [9] 林弋戈, 方占军. 锶原子光晶格钟. 物理学报, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [10] 田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚. 锶玻色子的“魔术”波长光晶格装载实验研究. 物理学报, 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [11] 陈海军. 变分法研究二维光晶格中玻色-爱因斯坦凝聚的调制不稳定性. 物理学报, 2015, 64(5): 054702. doi: 10.7498/aps.64.054702
    [12] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性. 物理学报, 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [13] 文文, 李慧军, 陈秉岩. 强相互作用费米气体在谐振子势中的干涉演化. 物理学报, 2012, 61(22): 220306. doi: 10.7498/aps.61.220306
    [14] 杨树荣, 蔡宏强, 漆伟, 薛具奎. 光晶格中超流费米气体的能隙孤子. 物理学报, 2011, 60(6): 060304. doi: 10.7498/aps.60.060304
    [15] 徐志君, 刘夏吟. 光晶格中非相干超冷原子的密度关联效应. 物理学报, 2011, 60(12): 120305. doi: 10.7498/aps.60.120305
    [16] 周骏, 任海东, 冯亚萍. 强非局域光晶格中空间孤子的脉动传播. 物理学报, 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [17] 柏小东, 刘锐涵, 刘璐, 唐荣安, 薛具奎. 一维光晶格中超流Fermi气体基态性质的研究. 物理学报, 2010, 59(11): 7581-7585. doi: 10.7498/aps.59.7581
    [18] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性. 物理学报, 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [19] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波. 物理学报, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [20] 徐志君, 程 成, 杨欢耸, 武 强, 熊宏伟. 三维光晶格中玻色凝聚气体基态波函数及干涉演化. 物理学报, 2004, 53(9): 2835-2842. doi: 10.7498/aps.53.2835
计量
  • 文章访问数:  6079
  • PDF下载量:  686
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-18
  • 修回日期:  2013-11-13
  • 刊出日期:  2014-03-05

/

返回文章
返回