-
自旋系统的动力学性质是量子统计和凝聚态理论研究的热点。本文利用递推方法,通过计算自旋关联函数及谱密度,研究了链接杂质对一维量子Ising模型动力学性质的调控效应。研究表明,链接杂质的出现打破了主体格点自旋耦合J和外磁场B之间原有的竞争关系,系统的动力学最终取决于链接杂质和主体格点自旋耦合的平均效应$\bar{J}$、链接杂质的不对称程度及外磁场B的强度等多因素之间的协同作用。对于对称型链接杂质(Jj-1=Jj),随着杂质耦合强度的增大,在B≥J的情况下,系统的动力学出现了由集体模行为到中心峰值行为的交跨;在B<J的情况下,出现了由类集体模行为到双峰行为,再到中心峰值行为的两次交跨。对于非对称型链接杂质(Jj-1≠Jj),其杂质位型比较多,可以提供更多的调控自由度,尤其当其中某个杂质耦合强度如Jj-1(或)Jj较小时,通过调节另一个杂质耦合强度Jj(或)Jj-1可以得到多种动力学行为之间的交跨;在B>J情况下非对称型链接杂质的调控机制更为复杂,出现了与以往研究经验不符的交跨顺序,且出现了双频谱这种新的动力学模式。一般来讲,当平均自旋耦合$\bar{J}$较弱或非对称型链接杂质的不对称程度较低时,系统倾向于呈现集体模行为;当$\bar{J}$较强时,系统倾向于呈现中心峰值行为;但当非对称型链接杂质的不对称程度较明显时,谱密度倾向于呈双峰、多峰或双频谱特征。研究表明,链接杂质的调控结果更加丰富,且具有独特的调控优势,因此利用链接杂质来调控量子自旋系统的动力学不失为一种新的尝试。It is of considerable theoretical interest to study the effects of impurity on spin dynamics of quantum spin systems. In this paper, the dynamical properties of the one-dimensional quantum Ising model with symmetric and asymmetric link-impurity are investigated by the recursion method, respectively. The autocorrelation function $C(t)=\overline{\left\langle\sigma_j^x(t) \sigma_j^x(0)\right\rangle}$ and the associated spectral density $\Phi(\omega)=\int_{-\infty}^{+\infty} d t e^{i \omega t} C(t)$ are calculated. The Hamiltonian of the Ising model with link-impurity can be written as $H=-\frac{1}{2}\left(J_{j-1} \sigma_{j-1}^x \sigma_j^x+J_j \sigma_j^x \sigma_{j+1}^x\right)-\frac{1}{2} J \sum_{i \neq j, j-1}^N \sigma_i^x \sigma_{i+1}^x-\frac{1}{2} B \sum_i^N \sigma_i^z$. Where J is the nearest-neighbor exchange coupling of the main spin chain, B denotes the external transverse magnetic field, $\sigma_i^\alpha(\alpha=x, y, z)$ are Pauli matrices at site i.The constant 1/2 is introduced for the convenience of theoretical deduction, and N is the number of spins. The so-called link-impurity Jj(Jj-1) is randomly introduced, which denotes the exchange coupling between the jth spin and the (j+1)th spin (the (j-1)th spin).The symmetric and asymmetric link-impurity correspond to the case of Jj-1=Jj and Jj-1≠Jj, respectively. The periodic boundary conditions are assumed in the theoretical calculation.
After introducing the link-impurity, the original competition between B and J in the pure Ising model was broken. The dynamics of the system depends on synergistic effect of multiple factors, such as the mean spin coupling $\bar{J}$ between j and the link-impurity, the asymmetry degree between Jj-1 and Jj,and the strength of the external magnetic field. In calculation, the exchange couplings of the main spin chain are set $J \equiv 1$ to fix the energy scale. We first consider the effects of symmetric link-impurity, the reference values can be set Jj-1=Jj<J(e.g., 0.4, 0.6 or 0.8) or Jj-1=Jj>J(e.g., 1.2, 1.6, 2.0),which are called weak or strong impurity coupling. When the magnetic field B≥J(e.g.B=1, 1.5 or 2.0),it is found that the dynamics of the system exhibits a crossover from a collective-mode behavior to a central-peak behavior as the impurity strength Jj-1=Jj increase. Interestingly, for B<J(e.g., B=4 or 0.7),there are two crossovers that is a collective-mode-like behavior to a double-peak behavior, then to a central-peak one as Jj-1=Jj increase.
For the case of asymmetric link-impurity, the impurity configuration is more complex. Using the cooperation between Jj-1 and Jj,more freedom of regulation can be provided and the dynamical properties are more abundant. For the case of B≤J(e.g., B=0.5, 1.0),the system tends to exhibit a collective-mode behavior when the mean spin coupling $\bar{J}$,are weak, and a central-peak behavior when $\bar{J}$ are strong. However, when the asymmetry between Jj-1 and Jj is obvious, the system tends to exhibit a double- or multi-peak behavior. For the case of B>J(e.g., B=1.5, 2.0),when $\bar{J}$ are strong, it tends to exhibit a central-peak behavior. However, when the asymmetry between Jj-1 and Jj is evident, the bispectral feature (two spectral peak appear at $\omega_1 \neq 0$ and $\omega_2 \neq 0$) dominates the dynamics. Under the regulating effect of link-impurities, the crossover between different dynamic behaviors can be easily realized, and it is easier to stimulate new dynamic modes, such as the double-peak behavior, the collective-mode-like behavior or bispectral feature one. The results indicate that using link-impurity to manipulate the dynamics of quantum spin systems may be a new try.-
Keywords:
- Ising model /
- Link-impurity /
- Spin correlation function /
- Spectral density
-
[1] Young A P 1997 Phys. Rev. B 56 11691
[2] Florencio J, Sá Barreto F C 1999 Phys. Rev. B 60 9555
[3] Liu Z Q, Kong X M, Chen X S 2006 Phys. Rev. B 73 224412
[4] Yuan X J, Kong X M, Xu Z B, Liu Z Q 2010 Physica A 389 242
[5] Chen S X, Shen Y Y, Kong X M 2010 Phys. Rev. B 82 174404
[6] Nunes M E S, Florencio J 2003 Phys. Rev. B 68 014406
[7] Nunes M E S, Plascak J A, Florencio J 2004 Physica A 332 1
[8] Xu Z B, Kong X M, Liu Z Q 2008 Phys. Rev. B 77 184414
[9] Li Y F, Kong X M 2013 Chin. Phys. B 22 037502
[10] Laflorencie N, Rieger H, Sandvik A W, Henelius P 2004 Phys. Rev. B 70 054430
[11] Li Y F, Shen Y Y, Kong X M 2012 Acta Phys. Sin. 61 107501 (in Chinese) [李银芳,申银阳,孔祥木2012 物理学报 61 107501].
[12] Da Conceição C M S, Maia R N P 2017 Phys. Rev. E 96 032121
[13] von Ohr S, Manssen M, Hartmann A K 2017 Phys. Rev. E 96 013315
[14] Theodorakis P E, Georgiou I, Fytas N G 2013 Phys. Rev. E 87 032119
[15] Crokidakis N, Nobre F D 2008 J. Phys.: Condens. Matter 20 145211
[16] Liu Z Q, Jiang S R, Kong X M 2014 Chin. Phys. B 23 087505
[17] Balcerzak T, Szałowski K, Jaščur M 2020 J. Magn. Magn. Mater. 507 166825
[18] Silva R L, Guimarães P R C, Pereira A R 2005 Solid State Commun. 134 313
[19] Sousa J M, Leite R V, Landim R R, Costa Filho R N 2014 Physica B 438 78
[20] Huang X, Yang Z 2015 Solid State Commun. 204 28
[21] Çağlar T, Berker A N 2015 Phys. Rev. E 92 062131
[22] Mazzitello K I, Candia J, Albano E V, 2015 Phys. Rev. E 91 042118
[23] Hadjiagapiou I A, Velonakis I N 2018 Physica A 505 965
[24] Hadjiagapiou I A, Velonakis I N 2021 Physica A 578 126112
[25] Yuan X J 2023 Acta Phys. Sin. 72 087501 (in chinese) [袁晓娟 2023 物理学报72 087501]
[26] Boechat B, Cordeiro C, Florencio J, Sá Barreto F C, de Alcantara Bonfim, O F 2000 Phys. Rev. B 61 14327
[27] De Souza W L, Silva É d M, Martins P H L 2020 Phys. Rev. E 101 042104
[28] Nunes M E S, Silva É d M, Martins P H L, Plascak J A, Florencio J 2018 Phys. Rev. E 98 042124
[29] Guimarães P R C, Plascak J A, De Alcantara Bonfim O F, Florencio J 2015 Phys. Rev. E 92 042115
[30] Hu F M, Ma T, Lin H Q, Gubernatis J E 2011 Phys. Rev. B 84 075414
[31] Liu Q, Liu C X, Xu C, Qi X L, Zhang S C 2009 Phys. Rev. Lett. 102 156603
[32] Cirillo A, Mancini M, Giuliano D, Sodano P 2011 Nuclear Phys. B 852 235
[33] Sindona A, Goold J, Lo Gullo N, Lorenzo S, Plastina F 2013 Phys. Rev. Lett. 111 165303
[34] Li J, Wang Y 2009 Europhys. Lett. 88 17009
[35] Apollaro T J G, Francica G, Giuliano D, Falcone G, Palma G M, Plastina F 2017 Phys. Rev. B 96 155145
[36] Giuliano D, Campagnano G, Tagliacozzo A 2016 Eur. Phys. J. B 89 251
[37] Rommer S, Eggert S 2000 Phys. Rev. B 62 4370
[38] Yuan X J, Zhao J F, Wang H, Bu H X, Yuan H M, Zhao B Y, Kong X M 2021 Physica A 583 126279
[39] Eggert S, Affleck I 1992 Phys. Rev. B 46 10866
[40] Schuster C, Eckern U 2002 Ann. Phys. 12 901
[41] Huang X, Yang Z 2015 J. Magn. Magn. Mater. 381 372
[42] Viswanath V S, Müller G 1994 The Recursion Method—Application to Many-body Dynamics (Berlin: Springe-Verlag)
[43] Lee M H 1982 Phys. Rev. Lett. 49 1072
[44] Lee M H 1982 Phys. Rev. B 26 2547
[45] Lee M H 2000 Phys. Rev. E 62 1769
[46] Yuan X J, Wang C Y, Kong X M, Zhao J F, Wang H, Bu H X 2023 J. Magn. Magn. Mater. 572 170632
[47] Nunes M E S, Plascak J A 2024 Phys. Rev. E 109 014134
[48] Florencio J, De Alcantara Bonfim O F 2020 Front. Phys. 8 557277
[49] Florencio J, Lee M H 1987 Phys. Rev. B 35 1835
计量
- 文章访问数: 79
- PDF下载量: 1
- 被引次数: 0