搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

个体行为与社会环境耦合演化的舆论生成模型

刘晓航 王逸宁 曲滋民 狄增如

引用本文:
Citation:

个体行为与社会环境耦合演化的舆论生成模型

刘晓航, 王逸宁, 曲滋民, 狄增如

Opinion formation model with co-evolution of individual behavior and social environment

Liu Xiao-Hang, Wang Yi-Ning, Qu Zi-Min, Di Zeng-Ru
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 社会舆论的形成是个体行为及其关联与社会环境影响共同作用的结果. 在受到环境因素影响的同时, 个体行为也反过来影响社会环境, 从而呈现出耦合演化的特点. 本文在Ising模型的基础上, 建立了一个包含社会张力累积和消解过程的舆论形成模型, 研究了个体行为和社会环境的耦合演化行为. 利用朗道的平均场理论, 重点分析了在不同舆论疏解系数下系统演化的定态解及其稳定性, 以及系统定态解随参数变化的分支行为. 同时使用计算机模拟方法对平均场理论的结果进行了印证. 研究结果表明, 将系统与环境的耦合演化机制加入Ising模型后, 系统会展现出一定的自组织特性. 当疏解系数较小时, 系统会出现不同程度上的整体一致舆论, 产生宏观有序状态; 当疏解系数较大时, 系统则稳定在无序状态. 同时, 存在一个临界参数, 使系统从任何初始状态出发均自发演化到临界的分支点状态.
    Entering the information era, the formation of public opinion is largely associated with the complex system constructed by the Internet, thereby possessing new characteristics. The formation of public opinion is the result of the interaction of individual behavior with social environment. In reality, the environmental factor and the individual behavior are usually related to each other and co-evolve with time. Based on the Ising model, in this paper established is an opinion formation model that includes the process of the accumulation and digestion of the social tension. In the model, a parameter named effective dissolving factor c is designed to represent the extent of the interaction between the system and the social environment. A two-dimensional dynamical system is involved in the model to describe the dynamics of individual behavior and social tension. The co-evolution behavior of the system is studied. Based on the Landau mean field theory, the stationary states of the dynamical system under different parameter values, i.e. the value of effective dissolving factor c, their stability and bifurcation of the system, are analyzed. Finally, the computer simulation method is used to verify the results. The research shows that with the co-evolution mechanism of the system, our model exhibits certain self-organization characteristics. When the effective dissolving factor c is smaller than the threshold value, the system will reach final consensus opinion, resulting in a macroscopically ordered state. Otherwise, when the dissolving factor c exceeds a threshold value, the system is stable in the disordered state. It is interesting to find that there is such a critical value of the parameter that it leads the system to be self-organized into a critical state from any initial state. The future detailed investigation on the criticality of the co-evolving system is also suggested, such as testing whether the system has evolved into the critical state according to the finite-sized scaling theory and calculating the critical exponent of the system. In addition, in this paper provided is a new perspective to tackle practical problems in public opinion. Based on the mechanism of the formation of public opinion revealed by our model, researchers are encouraged to conduct studies on how to monitor the state of public opinion more precisely and to predict the tipping point of the system evolution.
      通信作者: 狄增如, zdi@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 71731002, 61573065)和国家重点研发计划(批准号: 2017YFC0804000)资助的课题.
      Corresponding author: Di Zeng-Ru, zdi@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 71731002, 61573065) and the National Key Research and Development Plan, China (Grant No. 2017YFC0804000).
    [1]

    刘怡君, 李倩倩, 牛文元 2013 管理评论 25 167Google Scholar

    Liu Y J, Li Q Q, Niu W Y 2013 Mgt. Rev. 25 167Google Scholar

    [2]

    程洁, 狄增如 2008 力学进展 38 733Google Scholar

    Cheng J, Di Z R 2008 Adv. Mech. 38 733Google Scholar

    [3]

    Castellano C, Vilone D, Vespignani A 2003 EPL 63 153Google Scholar

    [4]

    Galam S 2002 EPJ B 25 403

    [5]

    Sznajd-Weron K, Sznajd J 2000 Int. J. Mod. Phys. C 11 1157Google Scholar

    [6]

    Deffuant G, Neau D, Amblard F, Weisubuch G 2000 Adv. Complex Syst. 3 87Google Scholar

    [7]

    Hegselmann R, Krause U 2002 J. Artif. Soc. S 5 2

    [8]

    Cheng J, Hu Y, Di Z, Fan Y 2010 Comput. Phys. Commun. 181 1697Google Scholar

    [9]

    Stauffer D, Ortmanns H M 2004 Int. J. Mod. Phys. C 15 241Google Scholar

    [10]

    Holme P, Newman M E J 2006 Phys. Rev. E 74 056108Google Scholar

    [11]

    Kozma B, Barrat A 2008 Phys. Rev. E 77 016102Google Scholar

    [12]

    Vazquez F, Victor M E, Miguel S M 2008 Phys. Rev. Lett. 100 108702Google Scholar

    [13]

    Cao L, Li X 2008 Phys. Rev. E 77 016108Google Scholar

    [14]

    Bartolozzi M, Leinweber D B, Thomas A W 2005 Phys. Rev. E 72 046113Google Scholar

    [15]

    Pancs R, Nicolaas J V 2007 J. Public Econ. 91 1

    [16]

    罗植, 杨冠琼, 狄增如 2012 物理学报 61 190509Google Scholar

    Luo Z, Yang G Q, Di Z R 2012 Acta Phys. Sin. 61 190509Google Scholar

    [17]

    Li Z, Tang X, Chen B, Yang J, Su P 2016 Comput. Soc. Networks 3 9Google Scholar

    [18]

    Li Z, Tang X 2015 International Conference on Computational Social Networks Beijing, China Aug. 4−6, 2015 p74

    [19]

    李振鹏, 唐锡晋 2014 系统科学与数学 5 004

    Li Z P, Tang J X 2014 J Syst. Sci. Math. Sci. 5 004

    [20]

    李振鹏, 唐锡晋 2013 系统工程理论与实践 33 420Google Scholar

    Li Z P, Tang J X 2013 System Eng. Theor. Prac. 33 420Google Scholar

    [21]

    de Oliveira M J 1992 J. Stat. Phys. 66 273Google Scholar

    [22]

    Pereira L F, Moreira F B 2005 Phys. Rev. E 71 016123Google Scholar

    [23]

    Fronczak A, Fronczak P 2017 Phys. Rev. E 96 012304

    [24]

    Chen H, Li G 2018 Phys. Rev. E 97 062304

    [25]

    Stella A L, Vandergande C 1989 Phys. Rev. Lett. 62 1067Google Scholar

    [26]

    Chen C Q, Dai Q L, Han W C, Yang J Z 2017 Chin. Phys. Lett. 34 28901Google Scholar

    [27]

    Wang X J, Zhang Y, You J W 2018 Chin. Phys. B 27 98901Google Scholar

    [28]

    Huang J Y, Jin X G 2019 JSTAT 2019 013202Google Scholar

    [29]

    Niu R W, Pan G J 2016 Chin. Phys. Lett. 33 68901Google Scholar

    [30]

    Bak P, Chao T, Kurt W 1987 Phys. Rev. Lett. 59 381Google Scholar

    [31]

    Bak P 1996 How Nature Works: The Science of Self-Organized Criticality (New York: Springer) pp1−32

    [32]

    Brunk G G 2002 JJPS 3 25Google Scholar

    [33]

    Brunk G G 2002 JTP 14 195

  • 图 1  不同温度下的热力学势

    Fig. 1.  The Landau potential under different temperatures.

    图 2  M-c 定态解分支图

    Fig. 2.  The bifurcation solutions of M-c function.

    图 3  T-c 定态解函数图像

    Fig. 3.  The function of stationary solutions.

    图 4  c = 2.5时系统状态演化行为

    Fig. 4.  Evolution of the system state given c = 2.5.

    图 5  c = 2.5时系统定态时磁矩M的统计分布

    Fig. 5.  Distribution of the magnetic moments (M) after system evolved to the stationary state, given c = 2.5.

    图 6  c = 1.3时系统状态演化行为

    Fig. 6.  The evolution of system state given c = 1.3.

    图 7  c = 1.3时系统定态时磁矩M的统计分布

    Fig. 7.  Distribution of the magnetic moments (M) after system evolved to the stationary state, given c = 1.3.

    图 8  c = 0.8时系统状态演化行为

    Fig. 8.  The evolution of system state given c = 0.8.

    图 9  c = 0.8时系统磁矩M的统计分布随时间的变化 (a) t = 100; (b) t = 300; (c) t = 500; (d) t = 600—700

    Fig. 9.  Distribution of the magnetic moments (M) when the system is evolving to the stationary state, given c = 0.8: (a) t = 100; (b) t = 300; (c) t = 500; (d) t = 600−700.

  • [1]

    刘怡君, 李倩倩, 牛文元 2013 管理评论 25 167Google Scholar

    Liu Y J, Li Q Q, Niu W Y 2013 Mgt. Rev. 25 167Google Scholar

    [2]

    程洁, 狄增如 2008 力学进展 38 733Google Scholar

    Cheng J, Di Z R 2008 Adv. Mech. 38 733Google Scholar

    [3]

    Castellano C, Vilone D, Vespignani A 2003 EPL 63 153Google Scholar

    [4]

    Galam S 2002 EPJ B 25 403

    [5]

    Sznajd-Weron K, Sznajd J 2000 Int. J. Mod. Phys. C 11 1157Google Scholar

    [6]

    Deffuant G, Neau D, Amblard F, Weisubuch G 2000 Adv. Complex Syst. 3 87Google Scholar

    [7]

    Hegselmann R, Krause U 2002 J. Artif. Soc. S 5 2

    [8]

    Cheng J, Hu Y, Di Z, Fan Y 2010 Comput. Phys. Commun. 181 1697Google Scholar

    [9]

    Stauffer D, Ortmanns H M 2004 Int. J. Mod. Phys. C 15 241Google Scholar

    [10]

    Holme P, Newman M E J 2006 Phys. Rev. E 74 056108Google Scholar

    [11]

    Kozma B, Barrat A 2008 Phys. Rev. E 77 016102Google Scholar

    [12]

    Vazquez F, Victor M E, Miguel S M 2008 Phys. Rev. Lett. 100 108702Google Scholar

    [13]

    Cao L, Li X 2008 Phys. Rev. E 77 016108Google Scholar

    [14]

    Bartolozzi M, Leinweber D B, Thomas A W 2005 Phys. Rev. E 72 046113Google Scholar

    [15]

    Pancs R, Nicolaas J V 2007 J. Public Econ. 91 1

    [16]

    罗植, 杨冠琼, 狄增如 2012 物理学报 61 190509Google Scholar

    Luo Z, Yang G Q, Di Z R 2012 Acta Phys. Sin. 61 190509Google Scholar

    [17]

    Li Z, Tang X, Chen B, Yang J, Su P 2016 Comput. Soc. Networks 3 9Google Scholar

    [18]

    Li Z, Tang X 2015 International Conference on Computational Social Networks Beijing, China Aug. 4−6, 2015 p74

    [19]

    李振鹏, 唐锡晋 2014 系统科学与数学 5 004

    Li Z P, Tang J X 2014 J Syst. Sci. Math. Sci. 5 004

    [20]

    李振鹏, 唐锡晋 2013 系统工程理论与实践 33 420Google Scholar

    Li Z P, Tang J X 2013 System Eng. Theor. Prac. 33 420Google Scholar

    [21]

    de Oliveira M J 1992 J. Stat. Phys. 66 273Google Scholar

    [22]

    Pereira L F, Moreira F B 2005 Phys. Rev. E 71 016123Google Scholar

    [23]

    Fronczak A, Fronczak P 2017 Phys. Rev. E 96 012304

    [24]

    Chen H, Li G 2018 Phys. Rev. E 97 062304

    [25]

    Stella A L, Vandergande C 1989 Phys. Rev. Lett. 62 1067Google Scholar

    [26]

    Chen C Q, Dai Q L, Han W C, Yang J Z 2017 Chin. Phys. Lett. 34 28901Google Scholar

    [27]

    Wang X J, Zhang Y, You J W 2018 Chin. Phys. B 27 98901Google Scholar

    [28]

    Huang J Y, Jin X G 2019 JSTAT 2019 013202Google Scholar

    [29]

    Niu R W, Pan G J 2016 Chin. Phys. Lett. 33 68901Google Scholar

    [30]

    Bak P, Chao T, Kurt W 1987 Phys. Rev. Lett. 59 381Google Scholar

    [31]

    Bak P 1996 How Nature Works: The Science of Self-Organized Criticality (New York: Springer) pp1−32

    [32]

    Brunk G G 2002 JJPS 3 25Google Scholar

    [33]

    Brunk G G 2002 JTP 14 195

  • [1] 袁晓娟. 链接杂质对一维量子Ising模型动力学性质的调控. 物理学报, 2025, 74(3): 037501. doi: 10.7498/aps.74.20241390
    [2] 袁晓娟. 三模型随机场对一维量子Ising模型动力学性质的调控. 物理学报, 2023, 72(8): 087501. doi: 10.7498/aps.72.20230046
    [3] 袁晓娟, 王辉, 赵邦宇, 赵敬芬, 明静, 耿延雷, 张凯煜. 随机纵场对一维量子Ising模型动力学性质的影响. 物理学报, 2021, 70(19): 197501. doi: 10.7498/aps.70.20210631
    [4] 吴晓娲, 秦四清, 薛雷, 杨百存, 张珂. 孕震断层锁固段累积损伤导致失稳的自组织-临界行为特征. 物理学报, 2018, 67(20): 206401. doi: 10.7498/aps.67.20180614
    [5] 孙保安, 王利峰, 邵建华. 非晶力学流变的自组织临界行为. 物理学报, 2017, 66(17): 178103. doi: 10.7498/aps.66.178103
    [6] 杨波, 范敏, 刘文奇, 陈晓松. 自我质疑机制下公共物品博弈模型的相变特性. 物理学报, 2017, 66(19): 196401. doi: 10.7498/aps.66.196401
    [7] 罗植, 杨冠琼, 狄增如. 具有空间因素的社会网络上的舆论形成. 物理学报, 2012, 61(19): 190509. doi: 10.7498/aps.61.190509
    [8] 何敏华, 张端明, 王海艳, 李小刚, 方频捷. 基于无标度网络拓扑结构变化的舆论演化模型. 物理学报, 2010, 59(8): 5175-5181. doi: 10.7498/aps.59.5175
    [9] 周海平, 蔡绍洪, 王春香. 含崩塌概率的一维沙堆模型的自组织临界性. 物理学报, 2006, 55(7): 3355-3359. doi: 10.7498/aps.55.3355
    [10] 张永炬, 余森江. 准自由支撑铝薄膜中有序表面结构的自组织生长. 物理学报, 2005, 54(10): 4867-4873. doi: 10.7498/aps.54.4867
    [11] 董庆瑞, 牛智川. 垂直耦合自组织InAs双量子点中激子能的计算. 物理学报, 2005, 54(4): 1794-1798. doi: 10.7498/aps.54.1794
    [12] 孙春峰. 钻石分形晶格上Ising模型的配分函数与关联函数. 物理学报, 2005, 54(8): 3768-3773. doi: 10.7498/aps.54.3768
    [13] 刘虹雯, 郭海明, 王业亮, 申承民, 杨海涛, 王雨田, 魏 龙. 阳极氧化铝模板表面自组织条纹的形成. 物理学报, 2004, 53(2): 656-660. doi: 10.7498/aps.53.656
    [14] 彭英才, 池田弥央, 宫崎诚一. Si纳米量子点的LPCVD自组织化形成及其生长机理研究. 物理学报, 2003, 52(12): 3108-3113. doi: 10.7498/aps.52.3108
    [15] 巩龙, 童培庆. 二维格气模型中动力学相变与自组织临界现象. 物理学报, 2003, 52(11): 2757-2761. doi: 10.7498/aps.52.2757
    [16] 全宏俊, 汪秉宏, 杨伟松, 王卫宁, 罗晓曙. 经纪人模仿在演化少数者博弈模型中引入的自组织分离效应. 物理学报, 2002, 51(12): 2667-2670. doi: 10.7498/aps.51.2667
    [17] 邵元智, 蓝图, 林光明. 三维动态Ising模型中的非平衡相变:三临界点的存在. 物理学报, 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [18] 吴木营, 叶爱军, 李志兵, 曾文光. 二层Ising模型的短时临界动力学性质. 物理学报, 2000, 49(6): 1168-1170. doi: 10.7498/aps.49.1168
    [19] 马余强, 李振亚. 无规场量子Ising模型的研究. 物理学报, 1990, 39(9): 1480-1487. doi: 10.7498/aps.39.1480
    [20] 栾长福. n维格子上Ising模型临界温度的上界. 物理学报, 1989, 38(3): 497-501. doi: 10.7498/aps.38.497
计量
  • 文章访问数:  8126
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-23
  • 修回日期:  2019-03-20
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回