搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机纵场对一维量子Ising模型动力学性质的影响

袁晓娟 王辉 赵邦宇 赵敬芬 明静 耿延雷 张凯煜

引用本文:
Citation:

随机纵场对一维量子Ising模型动力学性质的影响

袁晓娟, 王辉, 赵邦宇, 赵敬芬, 明静, 耿延雷, 张凯煜

Effects of random longitudinal magnetic field on dynamics of one-dimensional quantum Ising model

Yuan Xiao-Juan, Wang Hui, Zhao Bang-Yu, Zhao Jing-Fen, Ming Jing, Geng Yan-Lei, Zhang Kai-Yu
PDF
HTML
导出引用
  • 量子自旋系统的动力学性质是统计物理和凝聚态理论研究的热点问题. 本文利用递推关系方法, 通过计算系统的自旋关联函数及谱密度, 研究了纵场对一维量子Ising模型动力学性质的影响. 对于常数纵场的情况, 发现当自旋耦合相互作用较弱时纵场能够引起不同动力学行为之间的交跨效应, 且驱使系统出现了多种振动模式, 但较强的自旋耦合相互作用会掩盖纵场的影响. 对于随机纵场的情况, 分别讨论了双模型随机纵场和高斯型随机纵场的影响, 发现不同随机类型下的动力学结果有很大的差别, 且高度依赖于随机分布中参数的选取, 如双模分布的均值, 高斯分布的均值和偏差等. 尽管常数纵场和随机纵场下的动力学结果不同, 但可以得到一个共同的结论: 当纵场所占比重较大时, 系统的中心峰值行为将得到保持. 且此结论可以推广: 系统哈密顿中非对易项的出现有利于中心峰值行为的保持.
    The dynamical properties of quantum spin systems are a hot topic of research in statistical and condensed matter physics. In this paper, the dynamics of one-dimensional quantum Ising model with both transverse and longitudinal magnetic field (LMF) is investigated by the recursion method. The time-dependent spin autocorrelation function $C\left( t \right) = \overline {\left\langle {\sigma _j^x\left( t \right)\sigma _j^x\left( 0 \right)} \right\rangle } $ and corresponding spectral density $\varPhi \left( \omega \right)$ are calculated. The Hamiltonian of the model system can be written as $H = - \dfrac{1}{2}J\displaystyle\sum\limits_i^N {\sigma _i^x\sigma _{i + 1}^x - \dfrac{1}{2}\displaystyle\sum\limits_i^N {B_i^x\sigma _i^x} } - \dfrac{1}{2}\displaystyle\sum\limits_i^N {B_i^z\sigma _i^z}$. This work focuses mainly on the effects of LMF ($ B_i^x $) on spin dynamics of the Ising system, and both uniform LMF and random LMF are considered respectively. Without loss of generality, the transverse magnetic field $ B_i^z = 1 $ is set in the numerical calculation, which fixes the energy scale. The results show that the uniform LMF can induce crossovers between different dynamical behaviors (e.g. independent spins precessing, collective-mode behavior or central-peak behavior) and drive multiple vibrational modes (multiple-peaked behavior) when spin interaction ($ J $) is weak. However, the effect of uniform LMF is not obvious when spin interaction is strong. For the case of random LMF, the effects of bimodal-type and Gaussian-type random LMF are investigated, respectively. The dynamical results under the two types of random LMFs are quite different and highly dependent on many factors, such as the mean values ($ {B_1} $, $ {B_2} $ and $ {B_x} $) or the standard deviation ($ \sigma $) of random distributions. The nonsymmetric bimodal-type random LMF ($ {B_1} \ne {B_2} $) may induce new vibrational modes easily. The dynamical behaviors under the Gaussian-type random LMF are more abundant than under the bimodal-type random LMF. When $ \sigma $ is small, the system undergoes two crossovers: from a collective-mode behavior to a double-peaked behavior, and then to a central-peak behavior as the mean value $ {B_x} $ increases. However, when $ \sigma $ is large, the system presents only a central-peak behavior. For both cases of uniform LMF and random LMF, it is found that the central-peak behavior of the system is maintained when the proportion of LMF is large. This conclusion can be generalized that the emergence of noncommutative terms (noncommutative with the transverse-field term $\displaystyle\sum\nolimits_i^N {B_i^z\sigma _i^z}$) in Hamiltonian will enhance the central peak behavior. Therefore, noncommutative terms, such as next-nearest-neighbor spin interactions, Dzyaloshinskii-Moryia interactions, impurities, four-spin interactions, etc., can be added to the system Hamiltonian to modulate the dynamical properties. This provides a new direction for the future study of spin dynamics.
      通信作者: 袁晓娟, yuanxiaojuan@163.com
    • 基金项目: 国家自然科学基金(批准号: 11747132)、山东省高等学校科技计划项目(批准号: J18KB104)和齐鲁师范学院青年博士支持计划项目(批准号: 2017L0603, 2017L0604, QBJH19-0006)资助的课题
      Corresponding author: Yuan Xiao-Juan, yuanxiaojuan@163.com
    • Funds: Project supported by the Natural Science Foundation of China (Grant No. 11747132), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J18KB104), and the Young Doctoral Support Program of Qilu Normal University, China (Grant Nos. 2017L0603, 2017L0604, QBJH19-0006)
    [1]

    Plascak J A, Pires A S T, Sá Barreto F C 1982 Solid State Commun. 44 787Google Scholar

    [2]

    Plascak J A, Sá Barreto F C, Pires A S T, Goncalves L L 1983 J. Phys. C: Solid State Phys. 16 49Google Scholar

    [3]

    Watarai S, Matsubara T 1984 J Phys. Soc. Jpn. 53 3648Google Scholar

    [4]

    Levitsky R R, Zachek I R, Mits E V, Grigas J, Paprotny W 1986 Ferroelectrics 67 109Google Scholar

    [5]

    Wu W, Ellman B, Rosenbaum T F, Aeppli G, Reich D H 1991 Phys. Rev. Lett. 67 2076

    [6]

    Chernodub M N, Lundgren M, Niemi A J 2011 Phys. Rev. E 83 011126Google Scholar

    [7]

    Storm C, Nelson P C 2003 Phys. Rev. E 67 051906

    [8]

    Faure Q, Takayoshi S, Petit S, Simonet V, Raymond S, Regnault L P, Boehm M, White J S, Månsson M, Rüegg C, Lejay P, Canals B, Lorenz T, Furuya S C, Giamarchi T, Grenier B 2018 Nature Phys. 14 716Google Scholar

    [9]

    Jia X, Chakravarty S 2006 Phys. Rev. B 74 172414Google Scholar

    [10]

    Rønnow H M, Parthasarathy R, Jensen J, Aeppli G, Rosenbaum T F, McMorrow D F 2005 Science 308 389

    [11]

    Fogedby H C 1978 J. Phys. C: Solid State Phys. 11 2801Google Scholar

    [12]

    Sen S, Mahanti S D, Cai Z X 1991 Phys. Rev. B 43 10990Google Scholar

    [13]

    Sen P 1997 Phys. Rev. B 55 11367Google Scholar

    [14]

    Osenda O, Huang Z, Kais S 2003 Phys. Rev. A 67 062321Google Scholar

    [15]

    Florencio J, Sá Barreto F C 1999 Phys. Rev. B 60 9555Google Scholar

    [16]

    Chen S X, Shen Y Y, Kong X M 2010 Phys. Rev. B 82 174404

    [17]

    Da Conceição C M S, Maia R N P 2017 Phys. Rev. E 96 032121

    [18]

    von Ohr S, Manssen M, Hartmann A K 2017 Phys. Rev. E 96 013315Google Scholar

    [19]

    Hadjiagapiou I A 2011 Physica A 390 2229Google Scholar

    [20]

    Liu Z Q, Kong X M, Chen X S 2006 Phys. Rev. B 73 224412Google Scholar

    [21]

    Theodorakis P E, Georgiou I, Fytas N G 2013 Phys. Rev. E 87 032119

    [22]

    Crokidakis N, Nobre F D 2008 J. Phys.: Condens. Matter 20 145211

    [23]

    Liu Z Q, Jiang S R, Kong X M 2014 Chin. Phys. B 23 087505Google Scholar

    [24]

    Kenzelmann M, Coldea R, Tennant D A, Visser D, Hofmann M, Smeibidl P, Tylczynski Z 2002 Phys. Rev. B 65 144432Google Scholar

    [25]

    Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307Google Scholar

    [26]

    Senthil T 1998 Phys. Rev. B 57 8375Google Scholar

    [27]

    Dmitriev D V, Krivnov V Y 2004 Phys. Rev. B 70 144414Google Scholar

    [28]

    Neto M A, De Sousa J R 2013 Physica A 392 1Google Scholar

    [29]

    Corrêa Silva E V, Skea J E F, Rojas O, De Souza S M, Thomaz M T 2008 Physica A 387 5117Google Scholar

    [30]

    Do Nascimento D A, Neto M A, De Sousa J R, Pacobahyba J T 2012 J. Magn. Magn. Mater. 324 2429

    [31]

    Do Nascimento D A, Pacobahyba J T, Neto M A, Salmon O D R, Plascak J A 2017 Physica A 474 224

    [32]

    Zhao Z Y, Liu X G, He Z Z, Wang X M, Fan C, Ke W P, Li Q J, Chen L M, Zhao X, Sun X F 2012 Phys. Rev. B 85 134412Google Scholar

    [33]

    Kopeć T K, Usadel K D, Büttner G 1989 Phys. Rev. B 39 12418

    [34]

    Ovchinnikov A A, Dmitriev D V, Krivnov V Y, Cheranovskii V O 2003 Phys. Rev. B 68 214406Google Scholar

    [35]

    Liu Z Q, Jiang S R, Kong X M, Xu Y L 2017 Physica A 473 536

    [36]

    Viswanath V S, Müller G 1994 The Recursion Method—Application to Many-body Dynamics (Berlin: Springe-Verlag)

    [37]

    Mezei F, Murani A P 1979 J. Magn. Magn. Mater. 14 211Google Scholar

    [38]

    Lee M H 1982 Phys. Rev. Lett. 49 1072Google Scholar

    [39]

    Lee M H 1982 Phys. Rev. B 26 2547Google Scholar

    [40]

    Lee M H 2000 Phys. Rev. E 62 1769Google Scholar

    [41]

    Florencio J, De Alcantara Bonfim O F 2020 Front. Phys. 8 557277Google Scholar

    [42]

    Sur A, Jasnow D, Lowe I J 1975 Phys. Rev. B 12 3845Google Scholar

    [43]

    Yuan X J, Kong X M, Xu Z B, Liu Z Q 2010 Physica A 389 242Google Scholar

    [44]

    袁晓娟, 赵邦宇, 陈淑霞, 孔祥木 2010 物理学报 59 1499Google Scholar

    Yuan X J, Zhao B Y, Chen S X, Kong X M 2010 Acta Phys. Sin. 59 1499Google Scholar

    [45]

    Nunes M E S, De Mello Silva É, Martins P H L, Plascak J A, Florencio J 2018 Phys. Rev. E 98 042124

    [46]

    Li Y F, Kong X M 2013 Chin. Phys. B 22 037502Google Scholar

    [47]

    李银芳, 申银阳, 孔祥木 2012 物理学报 61 107501Google Scholar

    Li Y F, She Y Y, Kong X M 2012 Acta Phys. Sin. 61 107501Google Scholar

    [48]

    Huang X, Yang Z 2015 Solid State Commun. 204 28Google Scholar

    [49]

    De Souza W L, De Mello Silva É, Martins P H L 2020 Phys. Rev. E 101 042104

  • 图 1  横场取值$B_i^z = 1$, 纵场取值$ B_i^x = 0 $, 0.5, 1.0, 1.5和2.0, (a)−(d)分别对应自旋耦合相互作用参数J = 0.1, 0.5, 1.0和1.5时的自旋关联函数

    Fig. 1.  Take the transverse magnetic field $B_i^z = 1$ and the longitudinal magnetic field $ B_i^x = 0 $, 0.5, 1.0, 1.5 and 2.0, respectively. Spin autocorrelation functions $C\left( t \right)$ for different values of spin interactions (e.g., J = 0.1, 0.5, 1.0 and 1.5) are given in (a)−(d), respectively.

    图 2  横场取值$B_i^z = 1$, 纵场取值$ B_i^x = 0 $, 0.5, 1.0, 1.5和2.0, (a)−(d)分别对应自旋耦合相互作用参数J = 0.1, 0.5, 1.0和1.5时的谱密度.

    Fig. 2.  Take the transverse magnetic field $B_i^z = 1$ and the longitudinal magnetic field $ B_i^x = 0 $, 0.5, 1.0, 1.5 and 2.0, respectively. The corresponding spectral density $\varPhi \left( \omega \right)$ for different values of spin interactions (e.g., J = 0.1, 0.5, 1.0 and 1.5) are given in (a)−(d), respectively.

    图 3  随机纵场满足双模分布时的自旋关联函数和谱密度 (a), (b)对应$ {B_1} = 1.3 $$ {B_2} = 0.7 $时的结果; (c), (d)为$ {B_1} = 1.8 $$ {B_2} = 0.2 $时的结果

    Fig. 3.  Spin autocorrelation functions and the corresponding spectral densities for bimodal-type random longitudinal magnetic field. The results for $ {B_1} = 1.3 $ and $ {B_2} = 0.7 $ are given in (a) and (b), and the results for $ {B_1} = 1.8 $ and $ {B_2} = 0.2 $ are given in (c) and (d), respectively.

    图 4  随机纵场满足高斯分布时的谱密度 (a)−(d)分别对应$ \sigma = 0.3, {\text{ }}0.8, {\text{ }}1.0, {\text{ }}1.8 $时的结果.

    Fig. 4.  Spectral densities for Gaussian-type random longitudinal magnetic field. The results for $ \sigma = 0.3, {\text{ }}0.8, {\text{ }}1.0 $ and 1.8 are given in (a)−(d), respectively.

  • [1]

    Plascak J A, Pires A S T, Sá Barreto F C 1982 Solid State Commun. 44 787Google Scholar

    [2]

    Plascak J A, Sá Barreto F C, Pires A S T, Goncalves L L 1983 J. Phys. C: Solid State Phys. 16 49Google Scholar

    [3]

    Watarai S, Matsubara T 1984 J Phys. Soc. Jpn. 53 3648Google Scholar

    [4]

    Levitsky R R, Zachek I R, Mits E V, Grigas J, Paprotny W 1986 Ferroelectrics 67 109Google Scholar

    [5]

    Wu W, Ellman B, Rosenbaum T F, Aeppli G, Reich D H 1991 Phys. Rev. Lett. 67 2076

    [6]

    Chernodub M N, Lundgren M, Niemi A J 2011 Phys. Rev. E 83 011126Google Scholar

    [7]

    Storm C, Nelson P C 2003 Phys. Rev. E 67 051906

    [8]

    Faure Q, Takayoshi S, Petit S, Simonet V, Raymond S, Regnault L P, Boehm M, White J S, Månsson M, Rüegg C, Lejay P, Canals B, Lorenz T, Furuya S C, Giamarchi T, Grenier B 2018 Nature Phys. 14 716Google Scholar

    [9]

    Jia X, Chakravarty S 2006 Phys. Rev. B 74 172414Google Scholar

    [10]

    Rønnow H M, Parthasarathy R, Jensen J, Aeppli G, Rosenbaum T F, McMorrow D F 2005 Science 308 389

    [11]

    Fogedby H C 1978 J. Phys. C: Solid State Phys. 11 2801Google Scholar

    [12]

    Sen S, Mahanti S D, Cai Z X 1991 Phys. Rev. B 43 10990Google Scholar

    [13]

    Sen P 1997 Phys. Rev. B 55 11367Google Scholar

    [14]

    Osenda O, Huang Z, Kais S 2003 Phys. Rev. A 67 062321Google Scholar

    [15]

    Florencio J, Sá Barreto F C 1999 Phys. Rev. B 60 9555Google Scholar

    [16]

    Chen S X, Shen Y Y, Kong X M 2010 Phys. Rev. B 82 174404

    [17]

    Da Conceição C M S, Maia R N P 2017 Phys. Rev. E 96 032121

    [18]

    von Ohr S, Manssen M, Hartmann A K 2017 Phys. Rev. E 96 013315Google Scholar

    [19]

    Hadjiagapiou I A 2011 Physica A 390 2229Google Scholar

    [20]

    Liu Z Q, Kong X M, Chen X S 2006 Phys. Rev. B 73 224412Google Scholar

    [21]

    Theodorakis P E, Georgiou I, Fytas N G 2013 Phys. Rev. E 87 032119

    [22]

    Crokidakis N, Nobre F D 2008 J. Phys.: Condens. Matter 20 145211

    [23]

    Liu Z Q, Jiang S R, Kong X M 2014 Chin. Phys. B 23 087505Google Scholar

    [24]

    Kenzelmann M, Coldea R, Tennant D A, Visser D, Hofmann M, Smeibidl P, Tylczynski Z 2002 Phys. Rev. B 65 144432Google Scholar

    [25]

    Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307Google Scholar

    [26]

    Senthil T 1998 Phys. Rev. B 57 8375Google Scholar

    [27]

    Dmitriev D V, Krivnov V Y 2004 Phys. Rev. B 70 144414Google Scholar

    [28]

    Neto M A, De Sousa J R 2013 Physica A 392 1Google Scholar

    [29]

    Corrêa Silva E V, Skea J E F, Rojas O, De Souza S M, Thomaz M T 2008 Physica A 387 5117Google Scholar

    [30]

    Do Nascimento D A, Neto M A, De Sousa J R, Pacobahyba J T 2012 J. Magn. Magn. Mater. 324 2429

    [31]

    Do Nascimento D A, Pacobahyba J T, Neto M A, Salmon O D R, Plascak J A 2017 Physica A 474 224

    [32]

    Zhao Z Y, Liu X G, He Z Z, Wang X M, Fan C, Ke W P, Li Q J, Chen L M, Zhao X, Sun X F 2012 Phys. Rev. B 85 134412Google Scholar

    [33]

    Kopeć T K, Usadel K D, Büttner G 1989 Phys. Rev. B 39 12418

    [34]

    Ovchinnikov A A, Dmitriev D V, Krivnov V Y, Cheranovskii V O 2003 Phys. Rev. B 68 214406Google Scholar

    [35]

    Liu Z Q, Jiang S R, Kong X M, Xu Y L 2017 Physica A 473 536

    [36]

    Viswanath V S, Müller G 1994 The Recursion Method—Application to Many-body Dynamics (Berlin: Springe-Verlag)

    [37]

    Mezei F, Murani A P 1979 J. Magn. Magn. Mater. 14 211Google Scholar

    [38]

    Lee M H 1982 Phys. Rev. Lett. 49 1072Google Scholar

    [39]

    Lee M H 1982 Phys. Rev. B 26 2547Google Scholar

    [40]

    Lee M H 2000 Phys. Rev. E 62 1769Google Scholar

    [41]

    Florencio J, De Alcantara Bonfim O F 2020 Front. Phys. 8 557277Google Scholar

    [42]

    Sur A, Jasnow D, Lowe I J 1975 Phys. Rev. B 12 3845Google Scholar

    [43]

    Yuan X J, Kong X M, Xu Z B, Liu Z Q 2010 Physica A 389 242Google Scholar

    [44]

    袁晓娟, 赵邦宇, 陈淑霞, 孔祥木 2010 物理学报 59 1499Google Scholar

    Yuan X J, Zhao B Y, Chen S X, Kong X M 2010 Acta Phys. Sin. 59 1499Google Scholar

    [45]

    Nunes M E S, De Mello Silva É, Martins P H L, Plascak J A, Florencio J 2018 Phys. Rev. E 98 042124

    [46]

    Li Y F, Kong X M 2013 Chin. Phys. B 22 037502Google Scholar

    [47]

    李银芳, 申银阳, 孔祥木 2012 物理学报 61 107501Google Scholar

    Li Y F, She Y Y, Kong X M 2012 Acta Phys. Sin. 61 107501Google Scholar

    [48]

    Huang X, Yang Z 2015 Solid State Commun. 204 28Google Scholar

    [49]

    De Souza W L, De Mello Silva É, Martins P H L 2020 Phys. Rev. E 101 042104

  • [1] 袁晓娟. 链接杂质对一维量子Ising模型动力学性质的调控. 物理学报, 2025, 74(3): 037501. doi: 10.7498/aps.74.20241390
    [2] 孙振辉, 胡丽贞, 徐玉良, 孔祥木. 准一维混合自旋(1/2, 5/2) Ising-XXZ模型的量子相干和互信息. 物理学报, 2023, 72(13): 130301. doi: 10.7498/aps.72.20230381
    [3] 袁晓娟. 三模型随机场对一维量子Ising模型动力学性质的调控. 物理学报, 2023, 72(8): 087501. doi: 10.7498/aps.72.20230046
    [4] 刘晓航, 王逸宁, 曲滋民, 狄增如. 个体行为与社会环境耦合演化的舆论生成模型. 物理学报, 2019, 68(11): 118902. doi: 10.7498/aps.68.20182254
    [5] 杨波, 范敏, 刘文奇, 陈晓松. 自我质疑机制下公共物品博弈模型的相变特性. 物理学报, 2017, 66(19): 196401. doi: 10.7498/aps.66.196401
    [6] 李艳. 从光晶格中释放的超冷玻色气体密度-密度关联函数研究. 物理学报, 2014, 63(6): 066701. doi: 10.7498/aps.63.066701
    [7] 柳燕, 包景东. 非各态历经噪声的产生及其应用. 物理学报, 2014, 63(24): 240503. doi: 10.7498/aps.63.240503
    [8] 罗植, 杨冠琼, 狄增如. 具有空间因素的社会网络上的舆论形成. 物理学报, 2012, 61(19): 190509. doi: 10.7498/aps.61.190509
    [9] 袁晓娟, 赵邦宇, 陈淑霞, 孔祥木. 次近邻作用对随机量子Ising系统动力学性质的影响. 物理学报, 2010, 59(3): 1499-1506. doi: 10.7498/aps.59.1499
    [10] 邵元智, 钟伟荣, 卢华权, 雷石付. Ising自旋体系的非平衡动态相变. 物理学报, 2006, 55(4): 2057-2063. doi: 10.7498/aps.55.2057
    [11] 孙春峰. 钻石分形晶格上Ising模型的配分函数与关联函数. 物理学报, 2005, 54(8): 3768-3773. doi: 10.7498/aps.54.3768
    [12] 王延申. 开边界六顶角模型的边界关联函数. 物理学报, 2003, 52(11): 2700-2705. doi: 10.7498/aps.52.2700
    [13] 邵元智, 蓝图, 林光明. 三维动态Ising模型中的非平衡相变:三临界点的存在. 物理学报, 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [14] 张国民, 杨传章. 多自旋相互作用Ising模型相变类型的Monte Carlo研究. 物理学报, 1993, 42(10): 1680-1683. doi: 10.7498/aps.42.1680
    [15] 滕保华. 三维Ising模型的Green函数方法处理. 物理学报, 1991, 40(5): 826-832. doi: 10.7498/aps.40.826
    [16] 马余强, 李振亚. 无规场量子Ising模型的研究. 物理学报, 1990, 39(9): 1480-1487. doi: 10.7498/aps.39.1480
    [17] 贾云发, 吴杭生. 临界厚度d0和纵场临界电流曲线. 物理学报, 1984, 33(5): 684-688. doi: 10.7498/aps.33.684
    [18] 徐文兰, 李荫远. 面心立方格子上Ising自旋Ⅰ(1)的反铁磁性——配分函数的级数展开法. 物理学报, 1981, 30(12): 1624-1636. doi: 10.7498/aps.30.1624
    [19] 石赫, 郝柏林. 三维Ising模型的封闭近似解(Ⅳ)——配分函数的近似内插公式. 物理学报, 1981, 30(9): 1234-1241. doi: 10.7498/aps.30.1234
    [20] 张宗燧. 在经典电动力学中纵场的消除. 物理学报, 1955, 11(6): 453-468. doi: 10.7498/aps.11.453
计量
  • 文章访问数:  4527
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-05
  • 修回日期:  2021-05-13
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-10-05

/

返回文章
返回