搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位电阻测试分析Mg(BH4)2制备MgB2的成相过程

果辰 蔡欣炜 罗文浩 黄子耕 冯庆荣 甘子钊

引用本文:
Citation:

原位电阻测试分析Mg(BH4)2制备MgB2的成相过程

果辰, 蔡欣炜, 罗文浩, 黄子耕, 冯庆荣, 甘子钊

In situ resistance analysis of MgB2 formation process from Mg(BH4)2

Guo Chen, Cai Xin-Wei, Luo Wen-Hao, Huang Zi-Geng, Feng Qing-Rong, Gan Zi-Zhao
PDF
HTML
导出引用
  • Mg(BH4)2作为优质的储氢材料, 在约300 ℃开始分解释放H2, 并最终生成MgB2. 由于Mg(BH4)2的释氢反应可以在较低的温度下获得MgB2, 使其成为了制备MgB2超导材料的一种有效途径. 本文采用了原位电阻法, 通过测量Mg(BH4)2分解过程中电阻温度曲线, 详细地研究了Mg(BH4)2分解生成MgB2的相变过程. 同时, 利用电阻温度的微分曲线, 确定了在分解过程中不同产物的成相温度(TPF). 其中, MgB2的成相温度可以低至410 ℃. 通过与粉末烧结法制备MgB2块材的成相温度对比, 估算出反应前Mg的颗粒尺寸最低可达3.4 nm. 此外, 样品的XRD分析给出了生成的MgB2晶粒在10—18 nm之间, 在SEM图像中也同样观察到了MgB2纳米纤维结构. 这表明, Mg(BH4)2分解生成的Mg与B 形成了接近原子级的混合, 从而使MgB2可以在更低的成相温度(410 ℃)、更短的反应时间内成相. 该方法为MgB2在超导应用的制备提供了新的思路, 有利于实现MgB2的工业化生产.
    Mg(BH4)2 was previously studied as a promising hydrogen storage material, because of its high gravimetric storage capacities for hydrogen and suitable thermodynamic properties. Mg(BH4)2 began to decompose at about 300 ℃, and formed MgB2 at the end of hydrogen desorption process with the weight content of 14.9% of hydrogen lost. Aside from the prominent hydrogen storage property, the decomposition process from Mg(BH4)2 to MgB2 can be a potential method for fabricating superconducting MgB2 at a low sintering temperature. In this paper, MgB2 bulk was prepared by an in-situ reaction, using the Mg(BH4)2 pressed block as a precursor. The resistance change of the sample was monitored during the Mg(BH4)2 decomposition process and the resistance-temperature (R-T) curve of this process was recorded. Phase of MgH2, Mg and B were formed as the block slowly release its hydrogen before MgB2 occurred. According to the R-T curve, the phase formation of MgB2 started in a relatively low temperature of 410 ℃. Because MgB2 was critically formed by Mg and B derived from Mg(BH4)2, we can compare our formation temperature with previous study on MgB2 prepared by Mg and B in different particle size. The fitting result indicated that the particle size of Mg and B harvest from Mg(BH4)2 decomposition was only 3.4 nm on average. The nearly atomic level mixture of Mg and B resulted in a high chemical reactivity, which was the main reason for low sintering temperature. X-ray diffraction results showed that the purity of MgB2 was 95.2%, and the size of MgB2 grains was 10–18 nm. SEM images showed that the MgB2 bulk had a porous structure and poor connectivity, which was caused by large amount the hydrogen release during the decomposition. MgB2 nanofibers can also be observed inside the bulk. In the superconductivity test, the superconducting transition temperature of the bulk was 35 K. After all, such in situ method to fabricate MgB2 showed a great advantage in some aspects, as its low-cost precursors, low sintering temperature, small grain-size and high superconducting transition temperature in the formed MgB2, which have the potential in industrial scale fabrication of MgB2 bulks and wires.
      通信作者: 蔡欣炜, xwcai@pku.edu.cn
      Corresponding author: Cai Xin-Wei, xwcai@pku.edu.cn
    [1]

    Nakamori Y, Miwa K, Ninomiya A, Li H, Ohba N, Towata S I, Zuettel A, Orimo S I 2006 Phys. Rev. B 74 045126Google Scholar

    [2]

    Voss J, Hummelshøj J S, Łodziana Z, Vegge T 2008 J. Phys.: Condens. Matter 21 012203Google Scholar

    [3]

    Li H W, Kikuchi K, Nakamori Y, Ohba N, Miwa K, Towata S, Orimo S 2008 Acta Mater. 56 1342Google Scholar

    [4]

    Chlopek K, Frommen C, Leon A, Zabara O, Fichtner M 2007 J. Mater. Chem. 17 3496Google Scholar

    [5]

    Fujii H, Ozawa K 2011 Supercond. Sci. Technol. 24 095009Google Scholar

    [6]

    Luo W H, Huang Z G, Cai X W, Niu R R, Nie R J, Feng Q R, Wang F R, Gan Z Z 2019 Supercond. Sci. Technol. 32 085006Google Scholar

    [7]

    Yang J Z, Zhang X Z, Zheng J, Song P, Li X G 2010 Scripta Mater. 64 225Google Scholar

    [8]

    Yang J, Zheng J, Zhang X Z, Li Y Q, Yang R, Feng Q R, Li X G 2010 Chem. Commun. 46 7530Google Scholar

    [9]

    Chen L P, Zhang C, Wang Y B, Wang Y, Feng Q R, Gan Z Z, Yang J Z, Li X G 2010 Supercond. Sci. Technol. 24 015002Google Scholar

    [10]

    张辰, 陈丽萍, 王银博, 吴桃李, 刘文静, 刘雨潇, 薛驰, 冯庆荣 2011 低温物理学报 33 97Google Scholar

    Zhang C, Chen L P, Wang Y B, Wu T L, Liu W J, Liu Y X, Xue C, Feng Q R 2011 Chin. J. Low Temp. Phys. 33 97Google Scholar

    [11]

    郭峥山, 陈艺灵, 冯庆荣 2012 真空科学与技术学报 32 693Google Scholar

    Guo Z S, Chen Y L, Feng Q R 2012 J. Vac. Sci. Technol. 32 693Google Scholar

    [12]

    Chen Y L, Liao X B, Cai X Q, Yang C, Guo Z S, Niu R R, Zhang Y, Jia C Y, Feng Q R 2017 Physica C 542 34Google Scholar

    [13]

    Guo C, Wang H Z, Cai X W, Luo W H, Huang Z G, Zhang Y, Feng Q R, Gan Z Z 2021 Physica C 584 1353863Google Scholar

    [14]

    Hanada N, Chopek K, Frommen C, Lohstroh W, Fichtner M 2008 J. Mater. Chem. 18 2611Google Scholar

    [15]

    Zhuang C G, Liu X X, Guo T, Wang B, Li X G, Chen C P, Feng Q R 2007 Supercond. Sci. Technol. 20 1125Google Scholar

    [16]

    Chen C P, Zhou Z J, Li X G, Xu J, Wang Y H, Gao Z X, Feng Q R 2004 Solid State Commun. 131 275Google Scholar

    [17]

    DeFouw J D, Quintana J P, Dunand D C 2008 Acta Mater. 56 1680Google Scholar

    [18]

    冯庆荣, 陈晋平, 徐军, 王宇昊, 陈鑫 2004 低温物理学报 26 46Google Scholar

    Feng Q R, Chen C P, Xu J, Wang Y H, Chen X 2004 Chin. J. Low Temp. Phys. 26 46Google Scholar

    [19]

    Yamamoto A, Shimoyama J-i, Ueda S, Katsura Y, Horii S, Kishio K 2004 Supercond. Sci. Technol. 18 116Google Scholar

    [20]

    Yamamoto A, Shimoyama J, Ueda S, Katsura Y, Iwayama I, Horii S, Kishio K 2006 Physica C 445-448 806Google Scholar

  • 图 1  Mg(BH4)2原位烧结制备的MgB2块材

    Fig. 1.  MgB2 bulk fabricated by in situ reaction from Mg(BH4)2

    图 2  Mg(BH4)2原位烧结的电阻温度曲线及微分曲线

    Fig. 2.  R-T curve and differential curve for in situ reaction from Mg(BH4)2.

    图 3  成相温度与Mg颗粒度之间的拟合曲线

    Fig. 3.  Fitting curve of Mg particle size dependence of phase forming temperature.

    图 4  Mg(BH4)2原位烧结制备的MgB2的XRD衍射图

    Fig. 4.  XRD diffraction pattern of MgB2 fabricated by in situ reaction from Mg(BH4)2.

    图 5  50 Oe下MgB2样品的抗磁性曲线, 插图为超导转变温度(TC)附近的放大曲线

    Fig. 5.  M-T curve of the MgB2 sample measured under 50 Oe, the inset shows the enlarged curve near TC.

    图 6  Mg(BH4)2制备的MgB2的SEM图像 (a) MgB2块材的整体形貌; (b) Mg(BH4)2制备出的MgB2纳米纤维; (c) MgB2纳米纤维生长形成的MgB2晶块

    Fig. 6.  SEM image of MgB2 fabricated by Mg(BH4)2: (a) The morphology of the MgB2 bulk; (b) MgB2 nanofibers generated from Mg(BH4)2; (c) MgB2 grains formed by MgB2 nanofibers.

    表 1  不同颗粒度Mg粉对应的MgB2成相温度

    Table 1.  Phase forming temperature of MgB2 fabricated by different sized Mg powders.

    样品编号1234
    TPF/K908876842727
    a/μm10045150.04
    下载: 导出CSV
  • [1]

    Nakamori Y, Miwa K, Ninomiya A, Li H, Ohba N, Towata S I, Zuettel A, Orimo S I 2006 Phys. Rev. B 74 045126Google Scholar

    [2]

    Voss J, Hummelshøj J S, Łodziana Z, Vegge T 2008 J. Phys.: Condens. Matter 21 012203Google Scholar

    [3]

    Li H W, Kikuchi K, Nakamori Y, Ohba N, Miwa K, Towata S, Orimo S 2008 Acta Mater. 56 1342Google Scholar

    [4]

    Chlopek K, Frommen C, Leon A, Zabara O, Fichtner M 2007 J. Mater. Chem. 17 3496Google Scholar

    [5]

    Fujii H, Ozawa K 2011 Supercond. Sci. Technol. 24 095009Google Scholar

    [6]

    Luo W H, Huang Z G, Cai X W, Niu R R, Nie R J, Feng Q R, Wang F R, Gan Z Z 2019 Supercond. Sci. Technol. 32 085006Google Scholar

    [7]

    Yang J Z, Zhang X Z, Zheng J, Song P, Li X G 2010 Scripta Mater. 64 225Google Scholar

    [8]

    Yang J, Zheng J, Zhang X Z, Li Y Q, Yang R, Feng Q R, Li X G 2010 Chem. Commun. 46 7530Google Scholar

    [9]

    Chen L P, Zhang C, Wang Y B, Wang Y, Feng Q R, Gan Z Z, Yang J Z, Li X G 2010 Supercond. Sci. Technol. 24 015002Google Scholar

    [10]

    张辰, 陈丽萍, 王银博, 吴桃李, 刘文静, 刘雨潇, 薛驰, 冯庆荣 2011 低温物理学报 33 97Google Scholar

    Zhang C, Chen L P, Wang Y B, Wu T L, Liu W J, Liu Y X, Xue C, Feng Q R 2011 Chin. J. Low Temp. Phys. 33 97Google Scholar

    [11]

    郭峥山, 陈艺灵, 冯庆荣 2012 真空科学与技术学报 32 693Google Scholar

    Guo Z S, Chen Y L, Feng Q R 2012 J. Vac. Sci. Technol. 32 693Google Scholar

    [12]

    Chen Y L, Liao X B, Cai X Q, Yang C, Guo Z S, Niu R R, Zhang Y, Jia C Y, Feng Q R 2017 Physica C 542 34Google Scholar

    [13]

    Guo C, Wang H Z, Cai X W, Luo W H, Huang Z G, Zhang Y, Feng Q R, Gan Z Z 2021 Physica C 584 1353863Google Scholar

    [14]

    Hanada N, Chopek K, Frommen C, Lohstroh W, Fichtner M 2008 J. Mater. Chem. 18 2611Google Scholar

    [15]

    Zhuang C G, Liu X X, Guo T, Wang B, Li X G, Chen C P, Feng Q R 2007 Supercond. Sci. Technol. 20 1125Google Scholar

    [16]

    Chen C P, Zhou Z J, Li X G, Xu J, Wang Y H, Gao Z X, Feng Q R 2004 Solid State Commun. 131 275Google Scholar

    [17]

    DeFouw J D, Quintana J P, Dunand D C 2008 Acta Mater. 56 1680Google Scholar

    [18]

    冯庆荣, 陈晋平, 徐军, 王宇昊, 陈鑫 2004 低温物理学报 26 46Google Scholar

    Feng Q R, Chen C P, Xu J, Wang Y H, Chen X 2004 Chin. J. Low Temp. Phys. 26 46Google Scholar

    [19]

    Yamamoto A, Shimoyama J-i, Ueda S, Katsura Y, Horii S, Kishio K 2004 Supercond. Sci. Technol. 18 116Google Scholar

    [20]

    Yamamoto A, Shimoyama J, Ueda S, Katsura Y, Iwayama I, Horii S, Kishio K 2006 Physica C 445-448 806Google Scholar

  • [1] 周章渝, 肖寒, 王松, 傅兴华, 闫江. MgB2/B/MgB2约瑟夫森结的制备与直流特性. 物理学报, 2016, 65(18): 180301. doi: 10.7498/aps.65.180301
    [2] 孙玄, 黄煦, 王亚洲, 冯庆荣. MgB2 超薄膜的制备和性质研究. 物理学报, 2011, 60(8): 087401. doi: 10.7498/aps.60.087401
    [3] 孙辉辉, 杨烨, 王磊, Cheng C. H., 冯勇, 赵勇. 柠檬酸掺杂的MgB2超导体钉扎机理的研究. 物理学报, 2010, 59(5): 3488-3493. doi: 10.7498/aps.59.3488
    [4] 韩晓琴, 蒋利娟, 刘玉芳. MgB和MgB2(1A1)的结构与解析势能函数. 物理学报, 2010, 59(7): 4542-4546. doi: 10.7498/aps.59.4542
    [5] 阮文, 胡强林, 谢安东, 余晓光, 罗文浪, 朱正和. 基态MgB2分子的结构与分析势能函数. 物理学报, 2009, 58(12): 8188-8193. doi: 10.7498/aps.58.8188
    [6] 禹争光, 马衍伟, 王栋樑, 张现平, 高召顺, K. Watanabe, 黄伟文. 高性能MgB2长线材制备及性能表征. 物理学报, 2007, 56(11): 6680-6684. doi: 10.7498/aps.56.6680
    [7] 余增强, 吴 克, 马小柏, 聂瑞娟, 王福仁. 多层膜外退火方法制备MgB2超导薄膜. 物理学报, 2007, 56(1): 512-517. doi: 10.7498/aps.56.512
    [8] 史力斌, 任骏原, 张凤云, 张国华, 余增强. 关于MgB2/Al2O3超导薄膜电阻转变和各向异性的研究. 物理学报, 2007, 56(9): 5353-5358. doi: 10.7498/aps.56.5353
    [9] 张现平, 马衍伟, 高召顺, 禹争光, K. Watanabe, 闻海虎. 纳米C和SiC掺杂对MgB2带材超导性能的影响. 物理学报, 2006, 55(9): 4873-4877. doi: 10.7498/aps.55.4873
    [10] 陈荣华, 朱明原, 李 瑛, 李文献, 金红明, 窦士学. 脉冲磁场处理对碳纳米管掺杂MgB2线材临界电流密度的影响. 物理学报, 2006, 55(9): 4878-4882. doi: 10.7498/aps.55.4878
    [11] 王淑芳, B. B. Jin, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 程波林, 杨国桢. MgB2超导薄膜的微波测量. 物理学报, 2005, 54(5): 2325-2328. doi: 10.7498/aps.54.2325
    [12] 王淑芳, 朱亚斌, 张 芹, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 杨国桢. 利用电泳法在金属基底上制备MgB2超导厚膜. 物理学报, 2003, 52(6): 1505-1508. doi: 10.7498/aps.52.1505
    [13] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 樊 荣, 陈仙辉, 曹烈兆. 双能隙超导体MgB2的热导. 物理学报, 2003, 52(3): 683-686. doi: 10.7498/aps.52.683
    [14] 吴柏枚, 李 波, 杨东升, 郑卫华, 李世燕, 曹烈兆, 陈仙辉. 新型超导体MgB2和MgCNi3热、电输运性质研究. 物理学报, 2003, 52(12): 3150-3154. doi: 10.7498/aps.52.3150
    [15] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 陈仙辉, 曹烈兆. MgB2混合态热导率的反常增强. 物理学报, 2003, 52(8): 2015-2019. doi: 10.7498/aps.52.2015
    [16] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [17] 张杰, 雒建林, 白海洋, 陈兆甲, 林德华, 车广灿, 任治安, 赵忠贤, 金铎. 常压和高压合成MgB2的低温比热及两个超导能隙研究. 物理学报, 2002, 51(2): 342-346. doi: 10.7498/aps.51.342
    [18] 谭明秋, 陶向明. 高温超导体MgB2的电子结构研究. 物理学报, 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
    [19] 杨宏顺, 余旻, 李世燕, 李鹏程, 柴一晟, 章良, 陈仙辉, 曹烈兆. 新型超导体MgB2的热电势和电阻率研究. 物理学报, 2001, 50(6): 1197-1200. doi: 10.7498/aps.50.1197
    [20] 李慧玲, 阮可青, 李世燕, 莫维勤, 樊荣, 罗习刚, 陈仙辉, 曹烈兆. MgB2和Mg0.93Li0.07B2的电阻率与霍尔效应研究. 物理学报, 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
计量
  • 文章访问数:  4970
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-02
  • 修回日期:  2021-05-25
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-10-05

/

返回文章
返回