搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢负离子在梯度电场中光剥离的波包动力学研究

陈召杭 王德华 程绍昊

引用本文:
Citation:

氢负离子在梯度电场中光剥离的波包动力学研究

陈召杭, 王德华, 程绍昊

Study on the photodetachment wave packet dynamics of H- ion in a gradient electric field

Chen Zhao-Hang, Wang De-Hua, Cheng Shao-Hao
PDF
导出引用
  • 利用含时微扰论和闭合轨道理论相结合的方法, 给出了氢负离子在梯度电场中自关联函数的计算公式, 并且对体系的自关联函数进行了计算和分析. 重点探讨了激光脉冲的宽度、梯度电场中背景电场强度及电场梯度对氢负离子体系的自关联函数的影响. 研究结果表明, 当激光脉冲的脉冲宽度较短, 远小于剥离电子的闭合轨道的周期时, 量子波包的回归现象显著, 自关联函数中会出现一系列比较明显的回归峰, 这是由于沿闭合轨道返回的电子波包和出射的电子波包之间产生干涉形成的. 但是随着激光脉冲宽度的增加, 量子波包的回归现象减弱. 当脉冲宽度和闭合轨道的周期相差不是很大时, 自关联函数中的回归峰逐渐变宽, 振荡渐趋平缓, 相邻的峰之间发生相互干涉, 从而导致对应关系消失. 除此之外, 我们还发现梯度电场中背景电场强度和电场梯度对体系的自关联函数也会发生显著的影响. 随着背景电场强度和电场梯度的增加, 剥离电子的闭合轨道的周期变短, 自关联函数中回归峰的个数逐渐增加, 量子回归现象增强. 因此, 我们可以通过改变脉冲的宽度、外加电场强度的大小对氢负离子发生光剥离的自关联函数进行调控. 我们的结果对于实验研究原子或离子体系在外场中的波包动力学性质可以提供一定的参考价值.
    Using the combination of the time-dependent perturbation theory and the closed-orbit theory, we put forward a calculation formula for the autocorrelation function of H ion in a gradient electric field, and then calculate and analyze the autocorrelation function of the system. Especially, we discuss the effect of laser pulse width, electric field strength and the electric field gradient on the autocorrelation function of H ion in a gradient electric field. It is demonstrated that when the laser pulse width is very narrow, far less than the period of the detached electron, the quantum wave packet revival phenomenon is significant. A series of sharp reviving peaks appear in the autocorrelation function, which are caused by the interference between the returning electron wave packets travelling along the closed orbit and the outgoing electron wave packets. However, with the increase of laser pulse width, the quantum wave packet revival phenomenon becomes weakened. When the difference between the pulse width and the period of the closed orbit is not very large, the reviving peaks in the autocorrelation function become widely spread gradually and the oscillatory structures get flattened. This correspondence will vanish finally due to the interference between the adjacent peaks. In addition, our study also suggests that the background electric field strength and the electric field gradient in the gradient electric field can also have significant effects on the autocorrelation function. With the increase of background electric field strength and electric field gradient, the period of the detached electron's closed orbit gets shorter, the number of the revival peaks in the autocorrelation function is increased gradually, and the quantum wave packet revival phenomenon will be enhanced. Therefore, we can control the autocorrelation function of the hydrogen negative ion by changing the laser pulse width and the external electric field strength. Our results will provide some reference values for the experimental research on the wave packet dynamic property of atoms or ions in external fields.
      通信作者: 王德华, lduwdh@163.com
    • 基金项目: 国家自然科学基金(批准号: 11374133)和山东省高等学校科技计划项目(批准号: J13LJ04)资助的课题.
      Corresponding author: Wang De-Hua, lduwdh@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374133), and the Higher Educational Science and Technology Program of Shandong Province, China (Grant No. J13LJ04).
    [1]

    Alber G, Zoller P 1991 Phys. Rep. 199 231

    [2]

    Beims M W, Alber G 1993 Phys. Rev. A 48 3123

    [3]

    Parker J, Stroud Jr C R 1986 Phys. Rev. Lett. 56 716

    [4]

    Robinett R W 2004 Phys. Rep. 392 1

    [5]

    Noordam L D, Duncan D I, Gallagher T F 1992 Phys. Rev. A 45 4734

    [6]

    Broers B, Christian J F 1993 Phys. Rev. Lett. 71 344

    [7]

    Alber G, Ritsch H, Zoller P 1986 Phys. Rev. A 34 1058

    [8]

    Heller E J, Chem J 1991 Phys. 94 2723

    [9]

    Tomsovic S, Heller E J 1993 Phys. Rev. Lett. 70 1405

    [10]

    Du M L 1995 Phys. Rev. A 51 1955

    [11]

    Du M L, Delos J B 1988 Phys. Rev. A 38 1896

    [12]

    Yu Y L, Zhao X, Li H Y, Guo W H, Lin S L 2006 Chin. Phys. Letts. 23 2948

    [13]

    Wang L F, Wang Y W, Ran S Y, Yang G C 2009 J. Electron. Spectrosc. 173 40

    [14]

    Yang G C, Mao J M, Du M L 1999 Phys. Rev. A 59 2053

    [15]

    Wu X Q, Du M L, Zhao H J 2012 Chin. Phys.B 24 043202

    [16]

    Wang D H, Tan X M, Zhao G 2013 Phys. Soc. Jpn. 82 064301

    [17]

    Wang D H, Tang T T 2015 Commun. Theor. Phys. 63

    [18]

    Pradip K Ghosh 1995 Ions Trap. Clarendon Press 736

    [19]

    Yang G C, Du M L 2007 Phys. Rev. A 75 029904

  • [1]

    Alber G, Zoller P 1991 Phys. Rep. 199 231

    [2]

    Beims M W, Alber G 1993 Phys. Rev. A 48 3123

    [3]

    Parker J, Stroud Jr C R 1986 Phys. Rev. Lett. 56 716

    [4]

    Robinett R W 2004 Phys. Rep. 392 1

    [5]

    Noordam L D, Duncan D I, Gallagher T F 1992 Phys. Rev. A 45 4734

    [6]

    Broers B, Christian J F 1993 Phys. Rev. Lett. 71 344

    [7]

    Alber G, Ritsch H, Zoller P 1986 Phys. Rev. A 34 1058

    [8]

    Heller E J, Chem J 1991 Phys. 94 2723

    [9]

    Tomsovic S, Heller E J 1993 Phys. Rev. Lett. 70 1405

    [10]

    Du M L 1995 Phys. Rev. A 51 1955

    [11]

    Du M L, Delos J B 1988 Phys. Rev. A 38 1896

    [12]

    Yu Y L, Zhao X, Li H Y, Guo W H, Lin S L 2006 Chin. Phys. Letts. 23 2948

    [13]

    Wang L F, Wang Y W, Ran S Y, Yang G C 2009 J. Electron. Spectrosc. 173 40

    [14]

    Yang G C, Mao J M, Du M L 1999 Phys. Rev. A 59 2053

    [15]

    Wu X Q, Du M L, Zhao H J 2012 Chin. Phys.B 24 043202

    [16]

    Wang D H, Tan X M, Zhao G 2013 Phys. Soc. Jpn. 82 064301

    [17]

    Wang D H, Tang T T 2015 Commun. Theor. Phys. 63

    [18]

    Pradip K Ghosh 1995 Ions Trap. Clarendon Press 736

    [19]

    Yang G C, Du M L 2007 Phys. Rev. A 75 029904

  • [1] 刘志刚, 刘伟龙, 赵海军. 量子计算正三角形腔内的氢负离子光剥离截面. 物理学报, 2015, 64(16): 163202. doi: 10.7498/aps.64.163202
    [2] 李绍晟, 王德华. 氢负离子在变形球面附近的光剥离. 物理学报, 2013, 62(4): 043201. doi: 10.7498/aps.62.043201
    [3] 韩旭, 冯国英, 武传龙, 姜东升, 周寿桓. 掺镱光纤激光器自脉冲与自脉冲内的自锁模研究. 物理学报, 2012, 61(11): 114204. doi: 10.7498/aps.61.114204
    [4] 唐田田, 王德华, 黄凯云, 王姗姗. 氢负离子在磁场和电介质表面附近光剥离的研究. 物理学报, 2012, 61(6): 063202. doi: 10.7498/aps.61.063202
    [5] 唐田田, 王德华, 黄凯云. 氢负离子在微腔中的光剥离研究. 物理学报, 2011, 60(5): 053203. doi: 10.7498/aps.60.053203
    [6] 王姗姗, 王德华, 黄凯云, 唐田田. H-在金属面附近光剥离的波包动力学研究. 物理学报, 2011, 60(10): 103401. doi: 10.7498/aps.60.103401
    [7] 王姗姗, 王德华, 唐田田, 黄凯云. 激光脉冲对氢负离子在金属面附近光剥离的影响. 物理学报, 2011, 60(5): 053402. doi: 10.7498/aps.60.053402
    [8] 黄凯云, 王德华. 氢负离子在均匀电场和金属面附近的光剥离研究. 物理学报, 2010, 59(2): 932-936. doi: 10.7498/aps.59.932
    [9] 袁晓娟, 赵邦宇, 陈淑霞, 孔祥木. 次近邻作用对随机量子Ising系统动力学性质的影响. 物理学报, 2010, 59(3): 1499-1506. doi: 10.7498/aps.59.1499
    [10] 杨美蓉, 海文华, 鲁耿彪, 钟宏华. 激光脉冲作用下囚禁离子在Lamb-Dicke区域精确的量子运动. 物理学报, 2010, 59(4): 2406-2415. doi: 10.7498/aps.59.2406
    [11] 祁春超, 左都罗, 孟凡奇, 卢彦兆, 纠智先, 程祖海. 基于光放大的长脉冲抽运太赫兹激光. 物理学报, 2009, 58(7): 4641-4646. doi: 10.7498/aps.58.4641
    [12] 张 淼, 贾焕玉, 姬晓辉, 司 坤, 韦联福. 制备囚禁冷离子的振动压缩量子态. 物理学报, 2008, 57(12): 7650-7657. doi: 10.7498/aps.57.7650
    [13] 唐荣荣. 超短超强脉冲激光产生的电离通道的存活性态分析. 物理学报, 2006, 55(2): 494-498. doi: 10.7498/aps.55.494
    [14] 李飞, 海文华. 激光脉冲作用下囚禁离子的规则与混沌运动. 物理学报, 2004, 53(5): 1309-1315. doi: 10.7498/aps.53.1309
    [15] 丁尧, 孟凡波, 陈波, 马辉, 金雷, 陈瓞延. 激光梯度场中荧光关联谱学的实验研究. 物理学报, 2001, 50(11): 2269-2274. doi: 10.7498/aps.50.2269
    [16] 方本民, 姚志欣, 潘佰良, 陈 星, 陈 钢. 碱土金属蒸气中两种不同机理的高重复率脉冲激光交替振荡现象. 物理学报, 2000, 49(8): 1652-1655. doi: 10.7498/aps.49.1652
    [17] 佘卫龙, 余振新, 李荣基. 光折变“波导”诱失锁模ps激光脉冲自泵浦相位共轭. 物理学报, 1996, 45(12): 2010-2015. doi: 10.7498/aps.45.2010
    [18] 陈荣清, 徐至展, 孙岚, 姚关华, 张文琦, 李萍. 激光方脉冲作用下强场自电离过程. 物理学报, 1991, 40(10): 1584-1589. doi: 10.7498/aps.40.1584
    [19] 张连芳, 赵文正, 尚仁成, 潘力, 王世亮, 文克玲, 陈瓞延. 用脉冲电场光电流光谱研究Ne原子的自电离态. 物理学报, 1990, 39(12): 1870-1876. doi: 10.7498/aps.39.1870
    [20] 马海明, 李富铭. 砷化镓中微微秒光脉冲的自透射. 物理学报, 1989, 38(9): 1530-1533. doi: 10.7498/aps.38.1530
计量
  • 文章访问数:  4473
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-07
  • 修回日期:  2015-08-15
  • 刊出日期:  2015-12-05

/

返回文章
返回