搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

以二乙烯硫/砜基为中心的新型电荷转移分子双光子吸收特性

武香莲 赵珂 贾海洪 王富青

引用本文:
Citation:

以二乙烯硫/砜基为中心的新型电荷转移分子双光子吸收特性

武香莲, 赵珂, 贾海洪, 王富青

Two-photon absorption properties of novel charge transfer molecules with divinyl sulfide/sulfone center

Wu Xiang-Lian, Zhao Ke, Jia Hai-Hong, Wang Fu-Qing
PDF
导出引用
  • 理论研究分子结构与双光子吸收性质之间的关系对于指导实验者设计与合成功能分子材料具有重要意义. 在杂化密度泛函水平上, 利用响应函数方法, 计算了一类以二乙烯硫/砜基为中心的新型电荷转移分子的双光子吸收截面, 并在相同计算水平上, 与联苯乙烯类强双光子吸收分子做了比较; 以新型电荷转移分子为基础, 利用异构效应, 设计出了可以增强双光子吸收强度的分子结构. 研究表明, 在可应用波长范围内, 该系列分子表现出较强的双光子吸收响应, 与相似共轭长度的强双光子吸收分子具有相同量级的双光子吸收截面; 二乙烯硫/砜基在分子中心作为吸电子基团可以形成有效的电荷转移分子; 改变咔唑基的连接方式可以有效提高双光子吸收截面. 该研究为实验合成新型双光子吸收分子材料提供了理论依据.
    Organic materials with strong two-photon absorption response have attracted a great deal of interest in recent years for their many potential applications such as two-photon fluorescence microscopy, optical limiting, photodynamic therapy, and so on. Theoretical study on the relationships between molecular structure and two-photon absorption property has great importance in guiding the experimental design and synthesis of functional materials. Nowadays, quantum chemical calculations become very useful and popular tools in investigating the structure-property relations. At the same computational level, the two-photon absorption properties of different compounds can be compared accurately, and thus provide reasonable structure-property relations. Recently, a series of novel divinyl sulfides/sulfonesbased molecules have been synthesized and it is found that their photophysical properties behave like quadrupolar charge-transfer chromophores. In order to explore their potential two-photon absorption applications, in this paper, the two-photon absorption properties of these new molecules are calculated by using quantum chemical methods. Their molecular geometries are optimized at the hybrid B3LYP level with 6-31+g(d, p) basis set in the Gaussian 09 program. The two-photon absorption cross sections are calculated by response theory using the B3LYP functional with 6-31g(d) and 6-31+g(d) basis sets respectively in the Dalton program. In response theory, the single residue of the quadratic response function is used to identify the two-photon transition matrix element. Using the same methods, the two-photon absorption properties of distyrylbenzene compounds are computed for comparison. The basis set effects on excitation energies and two-photon absorption cross sections have been checked. It is found that the use of large basis sets could probably provide better numerical results, but the overall property trends would not change. Calculations show that the molecule with a triphenylamine group has the largest cross-section due to its strong donor groups. The divinyl sulfones-based dyes have larger cross-sections than the corresponding sulfides-based ones, because divinyl sulfones have stronger capability to accept electrons and at the same time the torsional angles between benzene rings in sulfones-based molecules are smaller than in the sulfides-based molecules. In the applicable wavelength range, these new dyes exhibit large two-photon absorption cross-sections which have the same order of magnitude as the strong two-photon absorption molecules with similar conjugation length. The largest cross section comes to 1613.3 GM calculated by using 6-31g(d) basis set. Molecular orbitals involved in the strongest two-photon absorption excitations are plotted and the charge transfer process is analyzed at length. The divinyl sulfide and sulfone centers behave as electron withdrawing groups and can form effective charge transfer molecules. On the basis of these new molecules, the structure inducing two-photon absorption enhancement is designed by employing isomerism effect. When the benzene rings of carbazole groups are connected with the molecular center, the planarity and charge transfer intensity are increased, and then the two-photon absorption cross-section can be improved dramatically. This study provides theoretical guidelines for the synthesis of new type of active two-photon absorption materials.
      通信作者: 赵珂, zhaoke@sdnu.edu.cn
    • 基金项目: 山东省自然科学基金(批准号: ZR2014AM026)和山东省高等学校科技计划项目(批准号: J14LJ01)资助的课题.
      Corresponding author: Zhao Ke, zhaoke@sdnu.edu.cn
    • Funds: Project supported by the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM026), and the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J14LJ01).
    [1]

    Göppert-Mayer M 1931 Ann. Phys. 401 273

    [2]

    Kaiser W, Garret C G B 1961 Phys. Rev. Lett. 7 229

    [3]

    Helmchen F, Denk W 2005 Nat. Methods 2 932

    [4]

    Spangler C W 1999 J. Mater. Chem. 9 2013

    [5]

    Brown S B, Brown E A, Walker I 2004 Lancet Oncol. 5 497

    [6]

    Walker E, Rentzepis P M 2008 Nat. Photonics 2 406

    [7]

    Liu Z, Cao D, Chen Y, Fang Q 2010 Dyes Pigm. 86 63

    [8]

    Charlot M, Porrès L, Entwistle C D, Beeby A, Marder T B, Blanchard-Desce M 2005 Phys. Chem. Chem. Phys. 7 600

    [9]

    Huang T H, Yang D, Kang Z H, Miao E L, Lu R, Zhou H P, Wang F, Wang G W, Cheng P F, Wang Y H, Zhang H Z 2013 Opt. Mater. 35 467

    [10]

    Kim H M, Cho B R 2009 Chem. Commun. 153

    [11]

    Katan C, Terenziani F, Mongin O, Werts M H V, Porrés L, Pons T, Mertz J, Tretiak S, Blanchard-Desce M 2005 J. Phys. Chem. A 109 3024

    [12]

    Arnbjerg J, Jiménez-Banzo A, Paterson M J, Nonell S, Borrell J I, Christiansen O, Ogilby P R 2007 J. Am. Chem. Soc. 129 5188

    [13]

    Pawlicki M, Collins H A, Denning R G, Anderson H L 2009 Angew. Chem. Int. Ed. 48 3244

    [14]

    Norman P, Macak P, Luo Y, Ågren H 1999 J. Chem. Phys. 110 7960

    [15]

    Macak P, Norman P, Luo Y, Ågren H 2000 J. Chem. Phys. 112 1868

    [16]

    Zhao B, Qi T L 2001 Acta Phys. Sin. 50 1699 (in Chinese) [赵波, 祁铁流 2001 物理学报 50 1699]

    [17]

    Wang C K, Zhang Z, Ding M C, Li X J, Sun Y H, Zhao K 2010 Chin. Phys. B 19 103304

    [18]

    Zhao K, Sun Y H, Wang C K, Luo Y, Zhang X, Yu X Q, Jiang M H 2005 Acta Phys. Sin. 54 2662 (in Chinese) [赵珂, 孙元红, 王传奎, 罗毅, 张献, 于小强, 蒋民华 2005 物理学报 54 2662]

    [19]

    Liu P W, Zhao K, Han G C 2011 Chem. Phys. Lett. 514 226

    [20]

    Han G C, Zhao K, Liu P W, Zhang L L 2012 Chin. Phys. B 21 118201

    [21]

    Jia H H, Zhao K, Wu X L 2014 Chem. Phys. Lett. 612 151

    [22]

    Monçalves M, Rampon D S, Schneider P H, Rodembusch F S, Silveira C C 2014 Dyes Pigm. 102 71

    [23]

    Das S K, Lim C S, Yang S Y, Han J H, Cho B R 2012 Chem. Commun. 48 8395

    [24]

    Huang Z L, Lei H, Li N, Qiu Z R, Wang H Z, Guo J D, Luo Y, Zhong Z P, Liu X F, Zhou Z H 2003 J. Mater. Chem. 13 708

    [25]

    Lee H J, Sohn J, Hwang J, Park S Y, Choi H, Cha M 2004 Chem. Mater. 16 456

    [26]

    Yao S, Ahn H Y, Wang X, Fu J, Van Stryland E W, Hagan D J, Belfield K D 2010 J. Org. Chem. 75 3965

    [27]

    Luo Y, Norman P, Macak P, Ågren H 2000 J. Phys. Chem. A 104 4718

    [28]

    Zhao K, Liu P W, Wang C K, Luo Y 2010 J. Phys. Chem. B 114 10814

    [29]

    Olsen J, Jørgensen P 1985 J. Chem. Phys. 82 3235

    [30]

    Monson P R, McClain W M 1970 J. Chem. Phys. 53 29

    [31]

    Zhao K, Tu Y, Luo Y 2009 J. Phys. Chem. B 11310271

    [32]

    Zhao K, Ferrighi L, Frediani L, Wang C K, Luo Y 2007 J. Chem. Phys. 126 204509

    [33]

    Terenziani F, Parthasarathy V, Pla-Quintana A, Maishal T, Caminade A M, Majoral J P, Blanchard-Desce M 2009 Angew. Chem. Int. Ed. 48 8691

    [34]

    Zhao K, Luo Y 2010 J. Phys. Chem. B 114 13167

  • [1]

    Göppert-Mayer M 1931 Ann. Phys. 401 273

    [2]

    Kaiser W, Garret C G B 1961 Phys. Rev. Lett. 7 229

    [3]

    Helmchen F, Denk W 2005 Nat. Methods 2 932

    [4]

    Spangler C W 1999 J. Mater. Chem. 9 2013

    [5]

    Brown S B, Brown E A, Walker I 2004 Lancet Oncol. 5 497

    [6]

    Walker E, Rentzepis P M 2008 Nat. Photonics 2 406

    [7]

    Liu Z, Cao D, Chen Y, Fang Q 2010 Dyes Pigm. 86 63

    [8]

    Charlot M, Porrès L, Entwistle C D, Beeby A, Marder T B, Blanchard-Desce M 2005 Phys. Chem. Chem. Phys. 7 600

    [9]

    Huang T H, Yang D, Kang Z H, Miao E L, Lu R, Zhou H P, Wang F, Wang G W, Cheng P F, Wang Y H, Zhang H Z 2013 Opt. Mater. 35 467

    [10]

    Kim H M, Cho B R 2009 Chem. Commun. 153

    [11]

    Katan C, Terenziani F, Mongin O, Werts M H V, Porrés L, Pons T, Mertz J, Tretiak S, Blanchard-Desce M 2005 J. Phys. Chem. A 109 3024

    [12]

    Arnbjerg J, Jiménez-Banzo A, Paterson M J, Nonell S, Borrell J I, Christiansen O, Ogilby P R 2007 J. Am. Chem. Soc. 129 5188

    [13]

    Pawlicki M, Collins H A, Denning R G, Anderson H L 2009 Angew. Chem. Int. Ed. 48 3244

    [14]

    Norman P, Macak P, Luo Y, Ågren H 1999 J. Chem. Phys. 110 7960

    [15]

    Macak P, Norman P, Luo Y, Ågren H 2000 J. Chem. Phys. 112 1868

    [16]

    Zhao B, Qi T L 2001 Acta Phys. Sin. 50 1699 (in Chinese) [赵波, 祁铁流 2001 物理学报 50 1699]

    [17]

    Wang C K, Zhang Z, Ding M C, Li X J, Sun Y H, Zhao K 2010 Chin. Phys. B 19 103304

    [18]

    Zhao K, Sun Y H, Wang C K, Luo Y, Zhang X, Yu X Q, Jiang M H 2005 Acta Phys. Sin. 54 2662 (in Chinese) [赵珂, 孙元红, 王传奎, 罗毅, 张献, 于小强, 蒋民华 2005 物理学报 54 2662]

    [19]

    Liu P W, Zhao K, Han G C 2011 Chem. Phys. Lett. 514 226

    [20]

    Han G C, Zhao K, Liu P W, Zhang L L 2012 Chin. Phys. B 21 118201

    [21]

    Jia H H, Zhao K, Wu X L 2014 Chem. Phys. Lett. 612 151

    [22]

    Monçalves M, Rampon D S, Schneider P H, Rodembusch F S, Silveira C C 2014 Dyes Pigm. 102 71

    [23]

    Das S K, Lim C S, Yang S Y, Han J H, Cho B R 2012 Chem. Commun. 48 8395

    [24]

    Huang Z L, Lei H, Li N, Qiu Z R, Wang H Z, Guo J D, Luo Y, Zhong Z P, Liu X F, Zhou Z H 2003 J. Mater. Chem. 13 708

    [25]

    Lee H J, Sohn J, Hwang J, Park S Y, Choi H, Cha M 2004 Chem. Mater. 16 456

    [26]

    Yao S, Ahn H Y, Wang X, Fu J, Van Stryland E W, Hagan D J, Belfield K D 2010 J. Org. Chem. 75 3965

    [27]

    Luo Y, Norman P, Macak P, Ågren H 2000 J. Phys. Chem. A 104 4718

    [28]

    Zhao K, Liu P W, Wang C K, Luo Y 2010 J. Phys. Chem. B 114 10814

    [29]

    Olsen J, Jørgensen P 1985 J. Chem. Phys. 82 3235

    [30]

    Monson P R, McClain W M 1970 J. Chem. Phys. 53 29

    [31]

    Zhao K, Tu Y, Luo Y 2009 J. Phys. Chem. B 11310271

    [32]

    Zhao K, Ferrighi L, Frediani L, Wang C K, Luo Y 2007 J. Chem. Phys. 126 204509

    [33]

    Terenziani F, Parthasarathy V, Pla-Quintana A, Maishal T, Caminade A M, Majoral J P, Blanchard-Desce M 2009 Angew. Chem. Int. Ed. 48 8691

    [34]

    Zhao K, Luo Y 2010 J. Phys. Chem. B 114 13167

  • [1] 方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林. Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究. 物理学报, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [2] 赵珂, 宋军, 张瀚. 给体位置和数目对四苯基乙烯衍生物双光子吸收性质的影响. 物理学报, 2019, 68(18): 183101. doi: 10.7498/aps.68.20190471
    [3] 杨哲, 张祥, 肖思, 何军, 顾兵. 双光子激发ZnSe自由载流子超快动力学研究. 物理学报, 2015, 64(17): 177901. doi: 10.7498/aps.64.177901
    [4] 贾克宁, 刘中波, 梁颖, 仝殿民, 樊锡君. Y型四能级系统中Doppler展宽对VIC相关的双光子吸收的影响. 物理学报, 2012, 61(6): 064204. doi: 10.7498/aps.61.064204
    [5] 赵珂, 刘朋伟, 韩广超. 分子动力学模拟方法在非线性光学中的应用. 物理学报, 2011, 60(12): 124216. doi: 10.7498/aps.60.124216
    [6] 郑加金, 陆云清, 李培丽. 激发态分子内质子转移有机分子HBT的三阶非线性光学特性. 物理学报, 2010, 59(7): 4687-4693. doi: 10.7498/aps.59.4687
    [7] 崔昊杨, 李志锋, 马法君, 陈效双, 陆卫. 硅的间接跃迁双光子吸收系数谱. 物理学报, 2010, 59(10): 7055-7059. doi: 10.7498/aps.59.7055
    [8] 苗泉, 赵鹏, 孙玉萍, 刘纪彩, 王传奎. 超短脉冲激光在DBASVP分子中传播时的双光子面积演化和光限幅效应. 物理学报, 2009, 58(8): 5455-5461. doi: 10.7498/aps.58.5455
    [9] 孙玉萍, 刘纪彩, 王传奎. 含时电离对飞秒脉冲激光在强双光子吸收介质中传播特性和光限幅行为的影响. 物理学报, 2009, 58(6): 3934-3942. doi: 10.7498/aps.58.3934
    [10] 孙元红, 王传奎. 新型多共轭链有机分子双光子吸收特性的理论研究. 物理学报, 2009, 58(8): 5304-5310. doi: 10.7498/aps.58.5304
    [11] 吴文智, 郑植仁, 金钦汉, 闫玉禧, 刘伟龙, 张建平, 杨延强, 苏文辉. 水溶性CdTe量子点的三阶光学非线性极化特性. 物理学报, 2008, 57(2): 1177-1182. doi: 10.7498/aps.57.1177
    [12] 崔昊杨, 李志锋, 李亚军, 刘昭麟, 陈效双, 陆 卫, 叶振华, 胡晓宁, 王 茺. 双光子吸收的Franz-Keldysh效应. 物理学报, 2008, 57(1): 238-242. doi: 10.7498/aps.57.238
    [13] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究. 物理学报, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [14] 李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展. 飞秒激光对氟化镁烧蚀机理研究. 物理学报, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [15] 赵 珂, 孙元红, 王传奎, 罗 毅, 张 献, 于晓强, 蒋民华. 1,4-二甲氧基-2,5-二乙烯基苯系列衍生物的双光子吸收截面. 物理学报, 2005, 54(6): 2662-2668. doi: 10.7498/aps.54.2662
    [16] 苏 燕, 王传奎, 王彦华, 陶丽敏. 二苯乙烯衍生物分子双光子吸收截面:官能团对称性的影响. 物理学报, 2004, 53(7): 2112-2117. doi: 10.7498/aps.53.2112
    [17] 江 俊, 李 宁, 陈贵宾, 陆 卫, 王明凯, 杨学平, 吴 刚, 范耀辉, 李永贵, 袁先漳. FEL诱导半导体材料非线性光吸收. 物理学报, 2003, 52(6): 1403-1407. doi: 10.7498/aps.52.1403
    [18] 何国华, 张俊祥, 叶莉华, 崔一平, 李振华, 来建成, 贺安之. 一种新型有机染料的宽带双光子吸收和光限幅特性的研究. 物理学报, 2003, 52(8): 1929-1933. doi: 10.7498/aps.52.1929
    [19] 张衍亮, 江 丽, 钮月萍, 孙真荣, 丁良恩, 王祖赓. Na2中由一对耦合能级相干叠加导致的双光子吸收的干涉增强效应. 物理学报, 2003, 52(2): 345-348. doi: 10.7498/aps.52.345
    [20] 贾天卿, 陈 鸿, 吴 翔. 导带电子的光吸收及其对材料破坏过程的影响. 物理学报, 2000, 49(7): 1277-1281. doi: 10.7498/aps.49.1277
计量
  • 文章访问数:  3351
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-25
  • 修回日期:  2015-08-19
  • 刊出日期:  2015-12-05

以二乙烯硫/砜基为中心的新型电荷转移分子双光子吸收特性

  • 1. 山东师范大学物理与电子科学学院, 济南 250014
  • 通信作者: 赵珂, zhaoke@sdnu.edu.cn
    基金项目: 山东省自然科学基金(批准号: ZR2014AM026)和山东省高等学校科技计划项目(批准号: J14LJ01)资助的课题.

摘要: 理论研究分子结构与双光子吸收性质之间的关系对于指导实验者设计与合成功能分子材料具有重要意义. 在杂化密度泛函水平上, 利用响应函数方法, 计算了一类以二乙烯硫/砜基为中心的新型电荷转移分子的双光子吸收截面, 并在相同计算水平上, 与联苯乙烯类强双光子吸收分子做了比较; 以新型电荷转移分子为基础, 利用异构效应, 设计出了可以增强双光子吸收强度的分子结构. 研究表明, 在可应用波长范围内, 该系列分子表现出较强的双光子吸收响应, 与相似共轭长度的强双光子吸收分子具有相同量级的双光子吸收截面; 二乙烯硫/砜基在分子中心作为吸电子基团可以形成有效的电荷转移分子; 改变咔唑基的连接方式可以有效提高双光子吸收截面. 该研究为实验合成新型双光子吸收分子材料提供了理论依据.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回