搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究

方宇 吴幸智 陈永强 杨俊义 宋瑛林

引用本文:
Citation:

Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究

方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林

Study on two-photon induced ultrafast carrier dynamcis in Ge-doped GaN by transient absorption spectroscopy

Fang Yu, Wu Xing-Zhi, Chen Yong-Qiang, Yang Jun-Yi, Song Ying-Lin
PDF
HTML
导出引用
  • 本文利用飞秒瞬态吸收光谱技术, 在近红外波段对Ge掺杂GaN(GaN: Ge)晶体进行了超快载流子动力学研究. 在双光子激发下, 瞬态吸收动力学呈现出双指数衰减, 其中慢过程寿命随着泵浦光强增加而增加. 瞬态吸收响应随着探测波长而单调增强, 并在约1050 nm处由空穴吸收占据主导. 利用简化模型模拟载流子动力学发现, GaN: Ge中碳杂质形成的深受主能级对空穴有很强的俘获能力, 并且引起了缺陷发光. 在较适中的载流子注入下, n型GaN中的载流子寿命可以通过控制缺陷浓度和载流子浓度来共同调控, 使其可应用于发光二极管和光通信等不同的领域.
    Gallium nitride (GaN) is a key material in blue light-emitting devices and is recognized as one of the most important semiconductors after Si. Its outstanding thermal conductivity, high saturation velocity, and high breakdown electric field have enabled the use of GaN for high-power and high-frequency devices. Although lots of researches have been done on the optical and optoelectrical properties of GaN, the defect-related ultrafast dynamics of the photo-excitation and the relaxation mechanism are still completely unclear at present, especially when the photo-generated carrier concentration is close to the defect density in n-type GaN. The transient absorption spectroscopy has become a powerful spectroscopic method, and the advantages of this method are contact-free, highly sensitive to free carriers, and femtosecond time resolved. In this article, by employing optical pump and infrared probe spectroscopy, we investigate the ultrafast photo-generated carriers dynamics in representative high-purity n-type and Ge-doped GaN (GaN:Ge) crystal. The transient absorption response increased as probe wavelengths increased, and hole-related absorption was superior to electron-related absorption, especially at 1050 nm. The transient absorption kinetics in GaN:Ge appeared to be double exponential decay under two-photon excitation. By modelling the carrier population dynamics in energy levels, which contained both radiative and non-radiative defect states, the carrier dynamics and carrier capture coefficients in GaN: Ge can be interpreted and determined unambiguously. The faster component (30–60 ps) of absorption decay kinetics corresponded to the capturing process of holes by negatively charged acceptor CN. However, the capturing process was limited by the recombination of electron and trapped holes under higher excitation after the saturation of deep acceptors. As a result, the slower component decayed slower as the excitation fluence increased. Moreover, the experimental and theoretical results found that, the carrier lifetime in n-GaN can be modulated by controlling the defect density and carrier concentration under a moderate carrier injection, making GaN applicable in different fields such as LED and optical communication.
      通信作者: 方宇, yufang@usts.edu.cn
      Corresponding author: Fang Yu, yufang@usts.edu.cn
    [1]

    Nakamura S, Pearton S, Fasol G 2013 The Blue Laser Diode: the Complete Sstory (2nd Ed.) (Berlin: Springer-Verlag) pp3,4

    [2]

    Pearton S J, Ren F 2000 Adv. Mater. 12 1571Google Scholar

    [3]

    Xiong C, Pernice W, Ryu K K, Schuck C, Fong K Y, Palacios T, Tang H X 2011 Opt. Express 19 10462Google Scholar

    [4]

    Bruch A W, Xiong C, Leung B, Poot M, Han J, Tang H X 2015 Appl. Phys. Lett. 107 141113Google Scholar

    [5]

    Monteagudo-Lerma L, Naranjo F B, Valdueza-Felip S, Jiménez-Rodríguez M, Monroy E, Postigo P A, Corredera P, González-Herráez M 2016 Phys. Status Solidi A 213 1269Google Scholar

    [6]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851Google Scholar

    [7]

    Reshchikov M A, Morkoc H 2005 J. Appl. Phys. 97 061301Google Scholar

    [8]

    Chichibu S F, Uedono A, Kojima K, Ikeda H, Fujito K, Takashima S, Edo M, Ueno K, Ishibashi S 2018 J. Appl. Phys. 123 161413Google Scholar

    [9]

    Jarašiūnas K, Malinauskas T, Nargelas S, Gudelis V, Vaitkus J V, Soukhoveev V, Usikov A 2010 Phys. Status Solidi B 247 1703Google Scholar

    [10]

    Iwinska M, Takekawa N, Ivanov V Y, Amilusik M, Kruszewski P, Piotrzkowski R, Litwin-Staszewska E, Lucznik B, Fijalkowski M, Sochacki T, Teisseyre H, Murakami H, Bockowski M 2017 J. Cryst. Growth 480 102Google Scholar

    [11]

    Ueno K, Arakawa Y, Kobayashi A, Ohta J, Fujioka H 2017 Appl. Phys. Express 10 101002Google Scholar

    [12]

    Götz W, Johnson N, Chen C, Liu H, Kuo C, Imler W 1996 Appl. Phys. Lett. 68 3144Google Scholar

    [13]

    Götz W, Kern R S, Chen C H, Liu H, Steigerwald D A, Fletcher R M 1999 Mater. Sci. Eng. B 59 211Google Scholar

    [14]

    Nenstiel C, Bügler M, Callsen G, Nippert F, Kure T, Fritze S, Dadgar A, Witte H, Bläsing J, Krost A, Hoffmann A 2015 Phys. Status SolidiRRL 9 716Google Scholar

    [15]

    Ajay A, Lim C B, Browne D A, Polaczyński J, Bellet-Amalric E, Bleuse J, den Hertog M I, Monroy E 2017 Nanotechnology 28 405204Google Scholar

    [16]

    Zhong Y, Wong K S, Zhang W, Look D C 2006 Appl. Phys. Lett. 89 022108Google Scholar

    [17]

    Williams K W, Monahan N R, Koleske D D, Crawford M H, Zhu X Y 2016 Appl. Phys. Lett. 108 141105Google Scholar

    [18]

    Ščajev P, Jarašiūnas K, Okur S, Özgür Ü, Morkoç H 2012 J. Appl. Phys. 111 023702Google Scholar

    [19]

    Ohashi Y, Katayama K, Shen Q, Toyoda T 2009 J. Appl. Phys. 106 063515Google Scholar

    [20]

    Upadhya P C, Martinez J A, Li Q, Wang G T, Swartzentruber B S, Taylor A J, Prasankumar R P 2015 Appl. Phys. Lett. 106 263103Google Scholar

    [21]

    Chen Y T, Yang C Y, Chen P C, Sheu J K, Lin K H 2017 Sci. Rep. 7 5788Google Scholar

    [22]

    Dugar P, Kumar M, T. C S K, Aggarwal N, Gupta G 2015 RSC Adv. 5 83969Google Scholar

    [23]

    Marcinkevičius S, Uždavinys T K, Foronda H M, Cohen D A, Weisbuch C, Speck J S 2016 Phys. Rev. B 94 235205Google Scholar

    [24]

    Fang Y, Yang J, Yong Y, Wu X, Xiao Z, Zhou F, Song Y 2016 J. Phys. D: Appl. Phys. 49 045105Google Scholar

    [25]

    方宇 2016 博士学位论文 (苏州: 苏州大学)

    Fang Y 2016 Ph. D. Dissertation (Suzhou: Soochow University) (in Chinese)

    [26]

    聂媱, 王友云, 吴雪琴, 方宇 2019 激光与光电子学进展 56 063201Google Scholar

    Nie Y, Wang Y, Wu X, Fang Y 2019 Laser & Optoelectronics Progress 56 063201Google Scholar

    [27]

    Zhao W, Palffy-Muhoray P 1993 Appl. Phys. Lett. 63 1613Google Scholar

    [28]

    Gu H, Ren G, Zhou T, Tian F, Xu Y, Zhang Y, Wang M, Zhang Z, Cai D, Wang J 2016 J. Alloys Compd. 674 218Google Scholar

    [29]

    Zhang Y M, Wang J F, Cai D M, Ren G Q, Xu Y, Wang M Y, Hu X J, Xu K 2020 Chin. Phys. B 29 026104Google Scholar

    [30]

    Kioupakis E, Rinke P, Schleife A, Bechstedt F, van de Walle C G 2010 Phys. Rev. B 81 241201Google Scholar

    [31]

    Ščajev P, Jarašiūnas K, Özgür Ü, Morkoç H, Leach J, Paskova T 2012 Appl. Phys. Lett. 100 022112Google Scholar

    [32]

    Ridley B K 2013 Quantum Processes in Semiconductors (5th Ed.) (Oxford: Oxford University Press) pp194–195

    [33]

    Lyons J, Janotti A, van de Walle C G 2010 Appl. Phys. Lett. 97 152108Google Scholar

    [34]

    Demchenko D O, Diallo I C, Reshchikov M A 2013 Phys. Rev. Lett. 110 087404Google Scholar

    [35]

    Zhang H S, Shi L, Yang X B, Zhao Y J, Xu K, Wang L W 2017 Adv. Opt. Mater. 5 1700404Google Scholar

    [36]

    Christenson S G, Xie W, Sun Y, Zhang S 2015 J. Appl. Phys. 118 135708Google Scholar

    [37]

    Wu S, Yang X, Zhang H, Shi L, Zhang Q, Shang Q, Qi Z, Xu Y, Zhang J, Tang N 2018 Phys. Rev. Lett. 121 145505Google Scholar

    [38]

    Fang Y, Zhou F, Yang J, Wu X, Xiao Z, Li Z, Song Y 2015 Appl. Phys. Lett. 106 131903Google Scholar

    [39]

    Reshchikov M A, Albarakati N M, Monavarian M, Avrutin V, Morkoç H 2018 J. Appl. Phys. 123 161520Google Scholar

    [40]

    Reshchikov M A, Korotkov R Y 2001 Phys. Rev. B 64 115205Google Scholar

    [41]

    Dreyer C E, Alkauskas A, Lyons J L, Speck J S, Van de Walle C G 2016 Appl. Phys. Lett. 108 141101Google Scholar

  • 图 1  (a) GaN: Ge晶体的线性吸收谱, 内插图为2PE下的发光图片; (b)不同脉冲能量激发下GaN: Ge的开孔Z扫描曲线, 实线为理论拟合曲线

    Fig. 1.  (a) Linear absorption spectrum of GaN: Ge crystal. The inset shows the two-photon excited photoluminescence photograph of sample; (b) open-aperture Z-scan data of GaN: Ge at several input pulse energies, the solid lines are theoretical fitting curves.

    图 2  (a) 2PE下GaN: Ge的超快瞬态吸收光谱, 激发能流为0.8 mJ/cm2; (b) 1PE下GaN: Ge的超快瞬态吸收光谱, 激发能流为0.5 mJ/cm2. 内插图均为可见光探测下的结果

    Fig. 2.  (a) Ultrafast TAS in GaN: Ge using 2PE under the excitation fluence of 0.8 mJ/cm2; (b) ultrafast TAS in GaN: Ge using 1PE under the excitation fluence of 0.5 mJ/cm2. The insets show the TAS probed at visible wavelengths.

    图 3  (a)不同激发能流下GaN: Ge的瞬态吸收动力学, 探测波长为1050 nm, 实线为双指数拟合曲线, 内插图为较短时间尺度下(7 ps)的数据; (b)不同激发能流下瞬态吸收衰减曲线拟合得到的快速和慢速弛豫寿命(分别为τ1和τ2)

    Fig. 3.  (a) The transient absorption kinetics in GaN: Ge under various excitation fluence probed at 1050 nm, the solid lines denote the theoretical curves using bi-exponential decay, and the inset illustrates the transient absorption kinetics in a 7 ps time window; (b) the fast and slow relaxation time (τ1 and τ2, respectively) extracted from transient absorption kinetics under various excitation fluence.

    图 4  用于模拟2PE下GaN载流子动力学的能带示意图. 直虚线箭头表示无辐射跃迁, 向下曲线箭头表示通过辐射复合产生的发光

    Fig. 4.  Energy band diagram used to model the carrier dynamics of GaN under 2PE. Straight broken arrows denote non-radiative transitions and curvy downwards arrows denote emissions via radiative recombination.

    图 5  利用载流子复合模型拟合和模拟不同激发能流下GaN: Ge的超快载流子弛豫动力学 (a)实验结果拟合; (b)更大的激发能流和1PE情况

    Fig. 5.  Fitting and simulation of ultrafast carrier relaxation dynamics in GaN: Ge using carrier recombination model: (a) The fitting of experimental results; (b) under higher excitation fluence and 1PE.

    图 6  1PE(0.8 mJ/cm2)和2PE(1.6 mJ/cm2)下GaN:Ge在通讯波段1310 nm下的超快瞬态吸收动力学

    Fig. 6.  Ultrafast transient absorption kinetics in GaN:Ge probed at communication band 1310 nm under both 1PE (0.8 mJ/cm2) and 2PE (1.6 mJ/cm2).

    表 1  用于模拟实验结果使用和确定的参数. NiτnRad的数值为预估值, BRad数值来自参考文献[18], Cni, CpiS数值为拟合实验数据确定的参数

    Table 1.  Parameters used/determined to model the experimental results. The values of Ni and τnRad were estimated. The value of BRad was extracted from Ref. [18]. The values of Cni, Cpi and S were determined by fitting the data.

    参数数值
    Ni1 × 1016 cm–3
    Cni(2.7 ± 0.8) × 10–9 cm3·s–1
    Cpi(5.9 ± 0.7) × 10–7 cm3·s–1
    τnRad40 ns
    BRad3 × 10–11 cm3·s–1
    S7 ± 1
    下载: 导出CSV
  • [1]

    Nakamura S, Pearton S, Fasol G 2013 The Blue Laser Diode: the Complete Sstory (2nd Ed.) (Berlin: Springer-Verlag) pp3,4

    [2]

    Pearton S J, Ren F 2000 Adv. Mater. 12 1571Google Scholar

    [3]

    Xiong C, Pernice W, Ryu K K, Schuck C, Fong K Y, Palacios T, Tang H X 2011 Opt. Express 19 10462Google Scholar

    [4]

    Bruch A W, Xiong C, Leung B, Poot M, Han J, Tang H X 2015 Appl. Phys. Lett. 107 141113Google Scholar

    [5]

    Monteagudo-Lerma L, Naranjo F B, Valdueza-Felip S, Jiménez-Rodríguez M, Monroy E, Postigo P A, Corredera P, González-Herráez M 2016 Phys. Status Solidi A 213 1269Google Scholar

    [6]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851Google Scholar

    [7]

    Reshchikov M A, Morkoc H 2005 J. Appl. Phys. 97 061301Google Scholar

    [8]

    Chichibu S F, Uedono A, Kojima K, Ikeda H, Fujito K, Takashima S, Edo M, Ueno K, Ishibashi S 2018 J. Appl. Phys. 123 161413Google Scholar

    [9]

    Jarašiūnas K, Malinauskas T, Nargelas S, Gudelis V, Vaitkus J V, Soukhoveev V, Usikov A 2010 Phys. Status Solidi B 247 1703Google Scholar

    [10]

    Iwinska M, Takekawa N, Ivanov V Y, Amilusik M, Kruszewski P, Piotrzkowski R, Litwin-Staszewska E, Lucznik B, Fijalkowski M, Sochacki T, Teisseyre H, Murakami H, Bockowski M 2017 J. Cryst. Growth 480 102Google Scholar

    [11]

    Ueno K, Arakawa Y, Kobayashi A, Ohta J, Fujioka H 2017 Appl. Phys. Express 10 101002Google Scholar

    [12]

    Götz W, Johnson N, Chen C, Liu H, Kuo C, Imler W 1996 Appl. Phys. Lett. 68 3144Google Scholar

    [13]

    Götz W, Kern R S, Chen C H, Liu H, Steigerwald D A, Fletcher R M 1999 Mater. Sci. Eng. B 59 211Google Scholar

    [14]

    Nenstiel C, Bügler M, Callsen G, Nippert F, Kure T, Fritze S, Dadgar A, Witte H, Bläsing J, Krost A, Hoffmann A 2015 Phys. Status SolidiRRL 9 716Google Scholar

    [15]

    Ajay A, Lim C B, Browne D A, Polaczyński J, Bellet-Amalric E, Bleuse J, den Hertog M I, Monroy E 2017 Nanotechnology 28 405204Google Scholar

    [16]

    Zhong Y, Wong K S, Zhang W, Look D C 2006 Appl. Phys. Lett. 89 022108Google Scholar

    [17]

    Williams K W, Monahan N R, Koleske D D, Crawford M H, Zhu X Y 2016 Appl. Phys. Lett. 108 141105Google Scholar

    [18]

    Ščajev P, Jarašiūnas K, Okur S, Özgür Ü, Morkoç H 2012 J. Appl. Phys. 111 023702Google Scholar

    [19]

    Ohashi Y, Katayama K, Shen Q, Toyoda T 2009 J. Appl. Phys. 106 063515Google Scholar

    [20]

    Upadhya P C, Martinez J A, Li Q, Wang G T, Swartzentruber B S, Taylor A J, Prasankumar R P 2015 Appl. Phys. Lett. 106 263103Google Scholar

    [21]

    Chen Y T, Yang C Y, Chen P C, Sheu J K, Lin K H 2017 Sci. Rep. 7 5788Google Scholar

    [22]

    Dugar P, Kumar M, T. C S K, Aggarwal N, Gupta G 2015 RSC Adv. 5 83969Google Scholar

    [23]

    Marcinkevičius S, Uždavinys T K, Foronda H M, Cohen D A, Weisbuch C, Speck J S 2016 Phys. Rev. B 94 235205Google Scholar

    [24]

    Fang Y, Yang J, Yong Y, Wu X, Xiao Z, Zhou F, Song Y 2016 J. Phys. D: Appl. Phys. 49 045105Google Scholar

    [25]

    方宇 2016 博士学位论文 (苏州: 苏州大学)

    Fang Y 2016 Ph. D. Dissertation (Suzhou: Soochow University) (in Chinese)

    [26]

    聂媱, 王友云, 吴雪琴, 方宇 2019 激光与光电子学进展 56 063201Google Scholar

    Nie Y, Wang Y, Wu X, Fang Y 2019 Laser & Optoelectronics Progress 56 063201Google Scholar

    [27]

    Zhao W, Palffy-Muhoray P 1993 Appl. Phys. Lett. 63 1613Google Scholar

    [28]

    Gu H, Ren G, Zhou T, Tian F, Xu Y, Zhang Y, Wang M, Zhang Z, Cai D, Wang J 2016 J. Alloys Compd. 674 218Google Scholar

    [29]

    Zhang Y M, Wang J F, Cai D M, Ren G Q, Xu Y, Wang M Y, Hu X J, Xu K 2020 Chin. Phys. B 29 026104Google Scholar

    [30]

    Kioupakis E, Rinke P, Schleife A, Bechstedt F, van de Walle C G 2010 Phys. Rev. B 81 241201Google Scholar

    [31]

    Ščajev P, Jarašiūnas K, Özgür Ü, Morkoç H, Leach J, Paskova T 2012 Appl. Phys. Lett. 100 022112Google Scholar

    [32]

    Ridley B K 2013 Quantum Processes in Semiconductors (5th Ed.) (Oxford: Oxford University Press) pp194–195

    [33]

    Lyons J, Janotti A, van de Walle C G 2010 Appl. Phys. Lett. 97 152108Google Scholar

    [34]

    Demchenko D O, Diallo I C, Reshchikov M A 2013 Phys. Rev. Lett. 110 087404Google Scholar

    [35]

    Zhang H S, Shi L, Yang X B, Zhao Y J, Xu K, Wang L W 2017 Adv. Opt. Mater. 5 1700404Google Scholar

    [36]

    Christenson S G, Xie W, Sun Y, Zhang S 2015 J. Appl. Phys. 118 135708Google Scholar

    [37]

    Wu S, Yang X, Zhang H, Shi L, Zhang Q, Shang Q, Qi Z, Xu Y, Zhang J, Tang N 2018 Phys. Rev. Lett. 121 145505Google Scholar

    [38]

    Fang Y, Zhou F, Yang J, Wu X, Xiao Z, Li Z, Song Y 2015 Appl. Phys. Lett. 106 131903Google Scholar

    [39]

    Reshchikov M A, Albarakati N M, Monavarian M, Avrutin V, Morkoç H 2018 J. Appl. Phys. 123 161520Google Scholar

    [40]

    Reshchikov M A, Korotkov R Y 2001 Phys. Rev. B 64 115205Google Scholar

    [41]

    Dreyer C E, Alkauskas A, Lyons J L, Speck J S, Van de Walle C G 2016 Appl. Phys. Lett. 108 141101Google Scholar

  • [1] 李高芳, 廖宇奥, 崔昊杨, 黄晨光, 王晨, 马国宏, 周炜, 黄志明, 褚君浩. Cd0.96Zn0.04Te光致载流子动力学特性的太赫兹光谱研究. 物理学报, 2023, 72(3): 037201. doi: 10.7498/aps.72.20221896
    [2] 赵珂, 宋军, 张瀚. 给体位置和数目对四苯基乙烯衍生物双光子吸收性质的影响. 物理学报, 2019, 68(18): 183101. doi: 10.7498/aps.68.20190471
    [3] 武香莲, 赵珂, 贾海洪, 王富青. 以二乙烯硫/砜基为中心的新型电荷转移分子双光子吸收特性. 物理学报, 2015, 64(23): 233301. doi: 10.7498/aps.64.233301
    [4] 周楠, 郑强, 胡北辰, 石德权, 苗春雨, 马春雨, 梁红伟, 郝胜智, 张庆瑜. 表面态调控对GaN荧光光谱的影响. 物理学报, 2014, 63(13): 137802. doi: 10.7498/aps.63.137802
    [5] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [6] 贾克宁, 刘中波, 梁颖, 仝殿民, 樊锡君. Y型四能级系统中Doppler展宽对VIC相关的双光子吸收的影响. 物理学报, 2012, 61(6): 064204. doi: 10.7498/aps.61.064204
    [7] 陈峻, 范广涵, 张运炎. 渐变型量子阱垒层厚度对GaN基双波长发光二极管发光特性调控的研究. 物理学报, 2012, 61(17): 178504. doi: 10.7498/aps.61.178504
    [8] 张运炎, 范广涵. 不同掺杂类型的GaN间隔层和量子阱垒层对双波长LED作用的研究. 物理学报, 2011, 60(1): 018502. doi: 10.7498/aps.60.018502
    [9] 张运炎, 范广涵, 章勇, 郑树文. 掺杂GaN间隔层对双波长发光二极管光谱调控作用的研究. 物理学报, 2011, 60(2): 028503. doi: 10.7498/aps.60.028503
    [10] 崔昊杨, 李志锋, 马法君, 陈效双, 陆卫. 硅的间接跃迁双光子吸收系数谱. 物理学报, 2010, 59(10): 7055-7059. doi: 10.7498/aps.59.7055
    [11] 邓懿, 赵德刚, 吴亮亮, 刘宗顺, 朱建军, 江德生, 张书明, 梁骏吾. 器件参数对GaN基n+-GaN/i-Alx Ga1-xN/n+-GaN结构紫外和红外双色探测器中紫外响应的影响. 物理学报, 2010, 59(12): 8903-8909. doi: 10.7498/aps.59.8903
    [12] 刘文宝, 赵德刚, 江德生, 刘宗顺, 朱建军, 张书明, 杨辉. 高阻氮化镓外延层的异常光吸收. 物理学报, 2010, 59(11): 8048-8051. doi: 10.7498/aps.59.8048
    [13] 孙元红, 王传奎. 新型多共轭链有机分子双光子吸收特性的理论研究. 物理学报, 2009, 58(8): 5304-5310. doi: 10.7498/aps.58.5304
    [14] 孙玉萍, 刘纪彩, 王传奎. 含时电离对飞秒脉冲激光在强双光子吸收介质中传播特性和光限幅行为的影响. 物理学报, 2009, 58(6): 3934-3942. doi: 10.7498/aps.58.3934
    [15] 左方圆, 王阳, 吴谊群, 赖天树. Ge2Sb2Te5非晶薄膜中超快载流子动力学的飞秒分辨反射光谱研究. 物理学报, 2009, 58(10): 7250-7254. doi: 10.7498/aps.58.7250
    [16] 崔昊杨, 李志锋, 李亚军, 刘昭麟, 陈效双, 陆 卫, 叶振华, 胡晓宁, 王 茺. 双光子吸收的Franz-Keldysh效应. 物理学报, 2008, 57(1): 238-242. doi: 10.7498/aps.57.238
    [17] 刘仕锋, 秦国刚, 尤力平, 张纪才, 傅竹西, 戴 伦. 在双热舟化学气相沉积系统中通过掺In技术生长GaN纳米线和纳米锥. 物理学报, 2005, 54(9): 4329-4333. doi: 10.7498/aps.54.4329
    [18] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究. 物理学报, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
    [19] 何国华, 张俊祥, 叶莉华, 崔一平, 李振华, 来建成, 贺安之. 一种新型有机染料的宽带双光子吸收和光限幅特性的研究. 物理学报, 2003, 52(8): 1929-1933. doi: 10.7498/aps.52.1929
    [20] 张衍亮, 江 丽, 钮月萍, 孙真荣, 丁良恩, 王祖赓. Na2中由一对耦合能级相干叠加导致的双光子吸收的干涉增强效应. 物理学报, 2003, 52(2): 345-348. doi: 10.7498/aps.52.345
计量
  • 文章访问数:  12264
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 修回日期:  2020-05-08
  • 上网日期:  2020-05-25
  • 刊出日期:  2020-08-20

/

返回文章
返回