搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单分子成像技术研究λ-DNA分子穿越微米通道端口的电动力学特性

王琼 王凯歌 孟康康 孙聃 韩仝雨 高爱华

引用本文:
Citation:

基于单分子成像技术研究λ-DNA分子穿越微米通道端口的电动力学特性

王琼, 王凯歌, 孟康康, 孙聃, 韩仝雨, 高爱华

Electrodynamic characteristics of λ-DNA molecule translocating through the microfluidic channel port studied with single molecular fluorescence imaging technology

Wang Qiong, Wang Kai-Ge, Meng Kang Kang, Sun Dan, Han Tong Yu, Gao Ai-Hua
PDF
HTML
导出引用
  • 操控单个DNA分子, 将其有效引入、导出微纳通道是实现DNA生物芯片功能的前提条件. 本文利用单分子荧光显微成像技术系统地实时观察分析λ-DNA单分子在电场力驱动下进入/穿出50 μm通道端口处的电动力学特性及规律. 研究发现: λ-DNA分子能够顺利进入trans端口并穿出cis端口, 外加电场强度存在最大(Emax)和最小(Emin)阈值, 只有场强E满足: EminEEmax时, λ-DNA分子才能进入trans端口并顺利穿出cis端口; 当电场强度小于最小阈值场强时, DNA分子不能进入trans端口; 当电场强度大于最大阈值场强时, λ-DNA分子虽可能从trans端口进入通道内部, 但不容易从cis端口穿出, 而是在迁移至通道内cis端口附近时, 运动方向反转、往复、甚至旋转等新现象, 并且易于粘附到管壁上; 随着场强增大, 反转位置距cis端口越大. 基于微流体电动力学理论, 对λ-DNA分子在微通道端口的不同运动状态的物理机制进行了初步分析. 本研究结果对研制基于微纳通道系统的基因芯片实验室及DNA分子传感器具有一定的实际指导意义.
    Manipulating a single DNA molecule and effectively introducing it into and exporting micro-nano-fluidic channels are prerequisites for the functional DNA biochips. And it is the key to the precise separation and screening of different DNA molecules by the micro-/nanochannel system that accurately understanding the movement characteristics and dynamic mechanism of DNA molecules moving near the channel port. In this paper, the electrodynamic characteristics of λ-DNA molecule entering into/leaving off a 50 μm channel port driven by the electric field force are systematically investigated and analyzed by the single molecule fluorescence microscopy. The experimental results indicated that there were the maximum (Emax) and minimum (Emin) thresholds of the applied electric field intensity, and only when the field intensity E meets EminEEmax, the single λ-DNA molecule could successfully enter into the trans port and exit out of the cis port; when the electric field intensity was less than the minimum threshold, EEmin, λ-DNA molecules could not enter the trans port; when the electric field intensity was greater than the maximum threshold, EmaxE, λ-DNA molecules could move into the microchannel through the trans port, but not exit out of the cis port. When λ-DNA molecule migrated toward the cis port along the channel, the movement state was changed, some new phenomena were observed, e.g. the translocation direction was reversed, reciprocated, or even rotated; moreover, the DNA molecules were easy to adhere to the channel wall. In addition, when the electric field intensity enhanced, the distance between the position where DNA molecular direction reversing and the cis port was increased. Based on the microfluidic electrodynamics, the physical mechanism of the velocities and translocation states of single λ-DNA molecule passing microchannel port was preliminarily analyzed. The results of this study have certain practical guiding significance for the development of gene chip laboratory and DNA molecular sensors based on the micro/nanochannel fluidic system.
      通信作者: 王凯歌, wangkg@nwu.edu.cn ; 高爱华, gaoaihua@nwu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61378083, 61405159)、国家科学技术部中美合作基金项目(批准号: 2011DFA12220)、国家自然科学基金重大基础研究计划培育项目(批准号: 91123030)和陕西省自然科学研究基础研究计划-重大基础研究项目(批准号: 2016ZDJC-15, S2018-ZC-TD-0061)资助的课题
      Corresponding author: Wang Kai-Ge, wangkg@nwu.edu.cn ; Gao Ai-Hua, gaoaihua@nwu.edu.cn
    • Funds: National Natural Science Foundation of China (Grant Nos. 61378083, 61405159), the International Cooperation Foundation of the National Science and Technology Ministry of of China (Grant No. 2011DFA12220), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91123030), and the Natural Science Basic Research Program of Shaanxi Province-Major Basic Research Project, China (Grant Nos. 2016ZDJC-15, S2018-ZC-TD-0061)
    [1]

    Streets A M, Huang Y 2014 Curr. Opin. Biotechnol. 25 69Google Scholar

    [2]

    Atalay Y T, Vermeir S, Witters D, Vergauwe N, Verbruggen B, Verboner P, Nicolai B M, Lammertyn J 2011 Trends Food Sci. Technol. 22 386Google Scholar

    [3]

    Rivet C, Lee H, Hirsch A, Hamilton S, Lu H 2011 Chem. Eng. Sci. 66 1490Google Scholar

    [4]

    David E, Mandal S, Yang A H J, Bernardoc C 2008 Microfluid. Nanofluid. 4 33Google Scholar

    [5]

    Branton D, Deamer D W, Marziali A, Bayley H 2008 Nat. Biotechnol. 26 1146Google Scholar

    [6]

    Wang K G, Yue S L, Wang L, Jin A, Chang Z G, Wang P Y, Feng Y C, Wang Y C, Niu H B 2006 Microfluid. Nanofluid. 2 85Google Scholar

    [7]

    Rief M, Clausen-Schaumann H, Gaub H E 1999 Nat. Struct. Biol. 6 346Google Scholar

    [8]

    Aksimentiev A, Schulten K 2005 Biophys. J. 88 3745Google Scholar

    [9]

    Wells D B, Abramkina V, Aksimentiev A 2007 J. Chem. Phys. 127 5101

    [10]

    Rose D J, Jorgenson J R, Jorgenson J W 1988 J. Anal. Chem. 60 642Google Scholar

    [11]

    陈义, 竺安 1991 色谱 6 353

    Chen Y, Zhu A 1991 Chin. J. Chrom. 6 353

    [12]

    Linhares M C, Kissinger P T 1991 J. Anal. Chem. 63 2076Google Scholar

    [13]

    Lee C H, Hesish C C 2013 Biomicrofluidics 7 044106Google Scholar

    [14]

    Renner C B, Patrick S D 2015 Soft Matter 11 3105Google Scholar

    [15]

    Wang H Q, Wang K G, Ma H W 2016 J. Nanosci. Nanotechno. 16 6986Google Scholar

    [16]

    Yang F Y, Wang K G, Sun D, Zhao W, Wang H Q, He X, Wang G R, Bai J T 2016 Chin. Phys. B 25 529

    [17]

    Jones P V, Salmon G L, Ros A 2017 J. Anal. Chem. 89 1531Google Scholar

    [18]

    Marie R, Beech J P, Vörös J, Tegenfeldt J O 2006 Langmuir 22 10103Google Scholar

    [19]

    Mitchell M J, Qiao R, Aluru N R 2000 J. Microelectromech. Syst. 9 435Google Scholar

    [20]

    李战华 2012 微流控芯片中的流体流动 (北京: 科学出版社) 第191页

    Li Z H 2012 Fluid Flow in Microfluidic Chips (Beijing: Science Press) p191 (in Chinese)

    [21]

    Uehara S, Shintaku H, Kawano S 2011 J. Fluids Eng. 133 121203Google Scholar

    [22]

    Firnkes M, Pedone D, Knezevic J, Dolinger M 2010 Nano Lett. 10 2162Google Scholar

    [23]

    Schoch R B, Han J, Renaud P 2008 Rev. Mod. Phys. 80 839Google Scholar

    [24]

    Perkins T T, Smith D, Chu S 1994 Science 264 822Google Scholar

    [25]

    高峰, 石则满, 冯鑫 2017 传感器与微系统 11 53

    Gao F, Shi Z M, Feng X 2017 Tansducer. Microsystem. 11 53

    [26]

    陈凌珊, 周建华, 仕康 1993 工程热物理学报 3 336

    Chen L S, Zhou J H, Wang S K 1993 J. Eng. Therm. 3 336

    [27]

    朱红, 周亚 2010 自然科学学报 32 45

    Zhou H, Zhou Y T 2010 J. Nat. Sci. 32 45

    [28]

    Sparreboom W, Van Den Berg A, Eijkel J C T 2009 Nat. Nanotechnol. 4 713Google Scholar

    [29]

    Tang J, Du N, Doyle P S 2011 Proc. Natl. Acad. Sci. U. S. A. 108 16153Google Scholar

    [30]

    Saffman P G 1965 J. Fluid Mech. 22 385Google Scholar

    [31]

    Magnus G 1853 Ann. Phys. 164 1Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Schematic diagram of experimental set-up.

    图 2  DNA分子从trans端口进入微米通道并在内部迁移(E = 3.75 × 103 V·m–1) (a) 不同时间下的CCD照片; (b) DNA分子位置随时间的变化曲线

    Fig. 2.  DNA molecules enter the microchannel from the trans port and migrate inside (E = 3.75 × 103 V·m–1): (a) CCD photographs; (b) DNA molecular position.

    图 3  DNA分子进出端口的速度随时间的变化(E = 3.75 × 104 V·m–1) (a) 进入trans端口; (b) 穿出cis端口; (c) 速度随外加电场强度的变化关系

    Fig. 3.  The velocity of DNA molecules entering and leaving the port (E = 3.75 × 103 V·m–1): (a) Entering the trans port; (b) leaving the cis port; and (c) velocity versus electric intensity.

    图 4  DNA分子在微通道内的反转运动 (a) E = 8.125 × 103 V·m–1; (b) E = 9.375 × 103 V·m–1; (c) 不同电场强度下, 在cis端口不同区域内的DNA分子反转数占总数的百分比

    Fig. 4.  Reversed motion of DNA molecules within micro channel under different electric intensity: (a) E = 8.125 × 103 V·m–1; (b) E = 9.375 × 103 V·m–1; (c) percentage of DNA molecules with reversal motion direction in different regions of the cis port under different electric intensity.

    图 5  DNA分子在trans端口附近沿轴向的运动 (a) 往复运动; (b) 旋转运动

    Fig. 5.  The motion of DNA molecules near the trans port: (a) Reciprocating along the axis; (b) rotating.

    图 6  DNA分子在trans端口附近的往复运动(E = 9.375 × 103 V·m–1)

    Fig. 6.  The track of DNA molecules reciprocating near the trans port (E = 9.375 × 103 V·m–1).

    图 7  不同电场强度下的trans端口附近通道内壁团聚有DNA分子 (a) E = 7.5 × 103 V·m–1; (b) E = 1 × 104 V·m–1

    Fig. 7.  Aggregates of DNA molecules on the wall of microchannel near the trans port; (a) E = 7.5 × 103 V·m–1; (b) E = 1 × 104 V·m–1.

    图 8  缓冲液在微米通道内的流速分布以及DNA受力和速度示意图 (a)受力; (b)速度

    Fig. 8.  Schematic diagram of buffer velocity distribution in microfluidic channel and the infromation of DNA: (a) Force; (b) velocity.

    图 9  DNA分子在端口同一截面不同位置的实测速度与理论速度

    Fig. 9.  Measured and theoretical velocities of DNA molecules at different positions on the same cross section of near the microchannel port.

    图 10  DNA分子在微米通道内端口附近处的反转运动示意图 (a) DNA分子在cis端口处反转, 反转后的DNA分子容易吸附在微米通道内管壁上, 7.5 × 103 V·m–1E ≤ 1 × 104 V·m–1; (b) DNA分子在trans端口附近的反转运动, E > 1 × 104 V·m–1

    Fig. 10.  Schematic diagram of DNA molecules moving near the port of microchannel: (a) reversing near the cis port, and the reversed DNA molecule is easy to be adsorbed onto the inner wall, 7.5 × 103 V·m–1E ≤ 1 × 104 V·m–1; (b) reversing near the trans port, E > 1 × 104 V·m–1.

  • [1]

    Streets A M, Huang Y 2014 Curr. Opin. Biotechnol. 25 69Google Scholar

    [2]

    Atalay Y T, Vermeir S, Witters D, Vergauwe N, Verbruggen B, Verboner P, Nicolai B M, Lammertyn J 2011 Trends Food Sci. Technol. 22 386Google Scholar

    [3]

    Rivet C, Lee H, Hirsch A, Hamilton S, Lu H 2011 Chem. Eng. Sci. 66 1490Google Scholar

    [4]

    David E, Mandal S, Yang A H J, Bernardoc C 2008 Microfluid. Nanofluid. 4 33Google Scholar

    [5]

    Branton D, Deamer D W, Marziali A, Bayley H 2008 Nat. Biotechnol. 26 1146Google Scholar

    [6]

    Wang K G, Yue S L, Wang L, Jin A, Chang Z G, Wang P Y, Feng Y C, Wang Y C, Niu H B 2006 Microfluid. Nanofluid. 2 85Google Scholar

    [7]

    Rief M, Clausen-Schaumann H, Gaub H E 1999 Nat. Struct. Biol. 6 346Google Scholar

    [8]

    Aksimentiev A, Schulten K 2005 Biophys. J. 88 3745Google Scholar

    [9]

    Wells D B, Abramkina V, Aksimentiev A 2007 J. Chem. Phys. 127 5101

    [10]

    Rose D J, Jorgenson J R, Jorgenson J W 1988 J. Anal. Chem. 60 642Google Scholar

    [11]

    陈义, 竺安 1991 色谱 6 353

    Chen Y, Zhu A 1991 Chin. J. Chrom. 6 353

    [12]

    Linhares M C, Kissinger P T 1991 J. Anal. Chem. 63 2076Google Scholar

    [13]

    Lee C H, Hesish C C 2013 Biomicrofluidics 7 044106Google Scholar

    [14]

    Renner C B, Patrick S D 2015 Soft Matter 11 3105Google Scholar

    [15]

    Wang H Q, Wang K G, Ma H W 2016 J. Nanosci. Nanotechno. 16 6986Google Scholar

    [16]

    Yang F Y, Wang K G, Sun D, Zhao W, Wang H Q, He X, Wang G R, Bai J T 2016 Chin. Phys. B 25 529

    [17]

    Jones P V, Salmon G L, Ros A 2017 J. Anal. Chem. 89 1531Google Scholar

    [18]

    Marie R, Beech J P, Vörös J, Tegenfeldt J O 2006 Langmuir 22 10103Google Scholar

    [19]

    Mitchell M J, Qiao R, Aluru N R 2000 J. Microelectromech. Syst. 9 435Google Scholar

    [20]

    李战华 2012 微流控芯片中的流体流动 (北京: 科学出版社) 第191页

    Li Z H 2012 Fluid Flow in Microfluidic Chips (Beijing: Science Press) p191 (in Chinese)

    [21]

    Uehara S, Shintaku H, Kawano S 2011 J. Fluids Eng. 133 121203Google Scholar

    [22]

    Firnkes M, Pedone D, Knezevic J, Dolinger M 2010 Nano Lett. 10 2162Google Scholar

    [23]

    Schoch R B, Han J, Renaud P 2008 Rev. Mod. Phys. 80 839Google Scholar

    [24]

    Perkins T T, Smith D, Chu S 1994 Science 264 822Google Scholar

    [25]

    高峰, 石则满, 冯鑫 2017 传感器与微系统 11 53

    Gao F, Shi Z M, Feng X 2017 Tansducer. Microsystem. 11 53

    [26]

    陈凌珊, 周建华, 仕康 1993 工程热物理学报 3 336

    Chen L S, Zhou J H, Wang S K 1993 J. Eng. Therm. 3 336

    [27]

    朱红, 周亚 2010 自然科学学报 32 45

    Zhou H, Zhou Y T 2010 J. Nat. Sci. 32 45

    [28]

    Sparreboom W, Van Den Berg A, Eijkel J C T 2009 Nat. Nanotechnol. 4 713Google Scholar

    [29]

    Tang J, Du N, Doyle P S 2011 Proc. Natl. Acad. Sci. U. S. A. 108 16153Google Scholar

    [30]

    Saffman P G 1965 J. Fluid Mech. 22 385Google Scholar

    [31]

    Magnus G 1853 Ann. Phys. 164 1Google Scholar

  • [1] 樊秦凯, 杨晨光, 胡书新, 徐春华, 李明, 陆颖. 基于热还原氧化石墨烯的单分子表面诱导荧光衰逝技术. 物理学报, 2023, 72(14): 147801. doi: 10.7498/aps.72.20230450
    [2] 田晓俊, 孔繁芳, 经士浩, 郁云杰, 张尧, 张杨, 董振超. 单分子瞬时带电态中电子-振动耦合特性的亚纳米荧光成像研究. 物理学报, 2022, 71(6): 063301. doi: 10.7498/aps.71.20212003
    [3] 陆越, 马建兵, 滕翠娟, 陆颖, 李明, 徐春华. 单分子动力学研究大肠杆菌单链结合蛋白与单链DNA的结合过程. 物理学报, 2018, 67(8): 088201. doi: 10.7498/aps.67.20180109
    [4] 滕翠娟, 陆越, 马建兵, 李明, 陆颖, 徐春华. 用单分子技术研究Sso7d与DNA的相互作用. 物理学报, 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [5] 王曦, 黎明, 叶方富, 周昕. DNA超分子水凝胶的粗粒化建模与模拟. 物理学报, 2017, 66(15): 150201. doi: 10.7498/aps.66.150201
    [6] 曹博智, 林瑜, 王艳伟, 杨光参. 抗生物素蛋白与DNA相互作用的单分子研究. 物理学报, 2016, 65(14): 140701. doi: 10.7498/aps.65.140701
    [7] 肖石燕, 梁好均. DNA及基于DNA链替换反应的分子计算. 物理学报, 2016, 65(17): 178106. doi: 10.7498/aps.65.178106
    [8] 许少锋, 汪久根. 微通道中高分子溶液Poiseuille流的耗散粒子动力学模拟. 物理学报, 2013, 62(12): 124701. doi: 10.7498/aps.62.124701
    [9] 王炜, 张琪昌, 靳刚. 非对称截面Kirchhoff弹性细杆模型简化方法研究. 物理学报, 2012, 61(6): 064602. doi: 10.7498/aps.61.064602
    [10] 马松山, 朱佳, 徐慧, 郭锐. 碱基对组分、电极位能及界面耦合对DNA分子I-V特性的影响. 物理学报, 2010, 59(10): 7458-7462. doi: 10.7498/aps.59.7458
    [11] 张兴华, 肖彬, 侯锡苗, 徐春华, 王鹏业, 李明. 用单分子磁镊研究顺铂导致的DNA凝聚. 物理学报, 2009, 58(6): 4301-4306. doi: 10.7498/aps.58.4301
    [12] 孟宪兰, 高绪团, 渠 朕, 康大伟, 刘德胜, 解士杰. 界面耦合对DNA分子电荷输运性质的影响. 物理学报, 2008, 57(8): 5316-5322. doi: 10.7498/aps.57.5316
    [13] 徐 慧, 郭爱敏, 马松山. 碱基序列对DNA分子电子结构的影响. 物理学报, 2007, 56(2): 1208-1213. doi: 10.7498/aps.56.1208
    [14] 刘小良, 徐 慧, 马松山, 邓超生, 郭爱敏. DNA分子链的电子局域性质及电导的研究. 物理学报, 2006, 55(10): 5562-5567. doi: 10.7498/aps.55.5562
    [15] 高绪团, 傅 雪, 宋 骏, 刘德胜, 解士杰. 位置涨落对DNA分子电子结构的影响. 物理学报, 2006, 55(2): 952-956. doi: 10.7498/aps.55.952
    [16] 马松山, 徐 慧, 刘小良, 郭爱敏. DNA分子链电子结构特性研究. 物理学报, 2006, 55(6): 3170-3174. doi: 10.7498/aps.55.3170
    [17] 刘玉颖, 窦硕星, 王鹏业, 谢 平, 王渭池. 应用分子梳技术对DNA与组蛋白相互作用的研究. 物理学报, 2005, 54(2): 622-627. doi: 10.7498/aps.54.622
    [18] 宋 骏, 陈 雷, 刘德胜, 解士杰. DNA分子能带结构与电子态研究. 物理学报, 2004, 53(8): 2792-2795. doi: 10.7498/aps.53.2792
    [19] 王琛, 王桂英, 徐至展. 全内反射荧光显微术应用于单分子荧光的纵向成像. 物理学报, 2004, 53(5): 1325-1330. doi: 10.7498/aps.53.1325
    [20] 胡国琦, 张训生, 鲍德松, 唐孝威. 二维颗粒流通道宽度效应的分子动力学模拟. 物理学报, 2004, 53(12): 4277-4281. doi: 10.7498/aps.53.4277
计量
  • 文章访问数:  7889
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-12
  • 修回日期:  2020-05-16
  • 上网日期:  2020-05-25
  • 刊出日期:  2020-08-20

/

返回文章
返回