-
中文摘要部分.通道蛋白精确调控生命活动中物质跨膜转运,为信号传递和能量代谢等复杂功能提供了结构保障。单分子荧光技术与单通道膜片钳技术偶联对于解析其“结构-动力学-功能”的关联至关重要。为解决二者联用中的细胞内的高荧光背景限制单分子信号采集的难点,本研究提出了一种选择性局部激发光路,在活细胞上表面构建可控范围的局域照明场,实现其中单分子荧光成像与动态追踪。基于可调照明范围和区域,达成照明光斑与玻璃电极的亚微米级共定位,有效获取细胞贴附式单通道电流记录,及高信噪比的单分子荧光时间轨迹。本工作建立了一个可用于揭示通道蛋白结构-功能耦联机制的、具有普适性的单分子水平研究框架。Channel proteins act as precise molecular regulators of transmembrane transport, a fundamental process essential for maintaining cellular homeostasis. These proteins dynamically modulate their functional states through conformational changes, forming the structural basis for complex physiological processes such as signal transduction and energy metabolism. Single-molecule fluorescence spectroscopy and single-channel patch-clamp electrophysiology represent two cornerstone techniques in modern biophysics: the former enables molecular-resolution analysis of structural dynamics, while the latter provides direct functional characterization of ion channel activity. Despite their complementary capabilities, integrating these techniques to simultaneously monitor protein conformational dynamics and functional states remains technically challenging, primarily due to the strong autofluorescence background inherent to single-molecule imaging in cellular environments. To address this limitation, we developed a spatially selective optical excitation system capable of localized illumination. By integrating tunable optical modules, we generated a dynamically adjustable excitation field on living cell membranes, achieving precise spatial registration between the excitation volume and the patch-clamp recording site. This system achieved submicron-scale alignment between the excitation zone and the micropipette contact area, enabling simultaneous electrophysiological recording and background-suppressed fluorescence detection within the patched membrane domain. Experimental validation demonstrated the system’s ability to perform single-molecule fluorescence imaging and trajectory analysis within designated observation areas, with imaging resolution inversely correlated with the size of the illuminated region. Optimized optical design allowed for precise excitation targeting while minimizing background illumination, resulting in high signal-to-noise ratio single-molecule imaging with significantly reduced photodamage. Integration with cell-attached patch-clamp configurations established a dual-modality platform for synchronized acquisition of single-molecule fluorescence images and single-channel recordings. Validation using mechanosensitive mPiezo1 channels confirmed the system’s compatibility with single-channel recordings, demonstrating that optical imaging induces no detectable interference with electrophysiological signal acquisition. This methodology overcomes longstanding challenges in the concurrent application of single-molecule imaging and electrophysiological techniques in live-cell environments. It establishes a novel experimental framework for investigating structure–function relationships in channel proteins and membrane-associated molecular machines through spatially coordinated optoelectronic measurements on live-cell membranes, with broad applicability in molecular biophysics and studies of transmembrane transport mechanisms.
-
Keywords:
- Channel Proteins /
- Live-Cell Dynamic Imaging /
- Single-Molecule Fluorescence Imaging /
- Cell-Attached Recording /
- Single-Molecule Tracking
-
[1] Jiang D, Banh R, El-Din T M G, Tonggu L, Lenaeus M J, Pomes R, Zheng N, Catterall W A 2021 Cell 184 5151
[2] Yang X Z, Lin C, Chen X D, Li S Q, Li X M, Xiao B L 2022 Nature 604 377
[3] Jentsch T J, Pusch M 2018 Physiol. Rev. 98 1493
[4] Cui Y, Yu M, Yao X, Xing J, Lin J, Li X 2018 Mol. Plant 11 1315
[5] Weiss S 2000 Nat. Struct. Biol. 7 724
[6] Smiley R D, Hammes G G 2006 Chem. Rev. 106 3080
[7] Drapeau P, Ali D W, Buss R R, Saint-Amant L 1999 J. Neurosci. Methods 88 1
[8] Neher E, Sakmann B 1976 Nature 260 799
[9] Hamill O P, Marty A, Neher E, Sakmann B, Sigworth F J 1981 Pflugers Archiv-European Journal of Physiology 391 85
[10] Mann S A, Heide J, Knott T, Airini R, Epureanu F B, Deftu A F, Deftu A T, Radu B M, Amuzescu B 2019 J. Pharmacol. Toxicol. Methods 100 1065990
[11] Mason M J, Simpson A K, Mahaut-Smith M P, Robinson H P C 2005 Biophys. J. 88 739
[12] Alcami P, Franconville R, Llano I, Marty A 2012 J. Neurosci. 32 3118
[13] Maki B A, Cummings K A, Paganelli M A, Murthy S E, Popescu G K 2014 J Vis Exp. 88 e51629
[14] Ludewig U, Pusch M, Jentsch T J 1997 Biophys. J. 73 789
[15] Vazetdinova A, Valiullina-Rakhmatullina F, Rozov A, Evstifeev A, Khazipov R, Nasretdinov A 2022 Front. Mol. Neurosci. 15 979479
[16] Bykova E A, Zhang X D, Chen T Y, Zheng J 2006 Nat. Struct. Mol. Biol. 13 1115
[17] Alford R, Ogawa M, Hassan M, Gandjbakhche A H, Choyke P L, Kobayashi H 2010 Contrast Media Mol. Imaging 5 1
[18] Yildiz A, Forkey J N, McKinney S A, Ha T, Goldman Y E, Selvin P R 2003 Science 300 2061
[19] Gill J K, Shaw G S 2024 Chembiochem 25 e202400193
[20] Jia Q, Fan Q K, Hou W Q, Yang C G, Wang L B, Wang H, Xu C H, Li M, Lu Y 2021 Acta Phys. Sin. 70 158701(in Chinese) [贾棋, 樊秦凯, 侯文清, 杨晨光, 王利邦, 王浩, 徐春华, 李明, 陆颖2021物理学报70 158701]
[21] Chen Z, Ma J B, Huang X Y, Jia Q, Xu C H, Zhang H D, Lu Y 2018 Acta Phys. Sin. 67 118201(in Chinese) [陈泽, 马建兵, 黄星榞, 贾棋, 徐春华, 张慧东, 陆颖2018物理学报67 118201]
[22] Li Y, Qian Z, Ma L, Hu S, Nong D, Xu C, Ye F, Lu Y, Wei G, Li M 2016 Nat. Commun. 7 12906
[23] Fan Q K, Yang C G, Hu S X, Xu C H, Li M, Lu Y 2023 Acta Phys. Sin. 72 147801(in Chinese) [樊秦凯, 杨晨光, 胡书新, 徐春华, 李明, 陆颖2023物理学报72 147801]
[24] Hou W, Ma D, He X, Han W, Ma J, Wang H, Xu C, Xie R, Fan Q, Ye F, Hu S, Li M, Lu Y 2021 Nano Lett. 21 485
[25] Ma D F, Hou W Q, Xu C H, Zhao C Y, Ma J B, Huang X Y, Jia Q, Ma L, Liu C, Li M, Lu Y 2020 Acta Phys. Sin. 69 038701(in Chinese) [马东飞, 侯文清, 徐春华, 赵春雨, 马建兵, 黄星榞, 贾棋, 马璐, 刘聪, 李明, 陆颖2020物理学报69 038701]
[26] Zhou L, He R, Fang P, Li M, Yu H, Wang Q, Yu Y, Wang F, Zhang Y, Chen A, Peng N, Lin Y, Zhang R, Trilling M, Broering R, Lu M, Zhu Y, Liu S 2021 Nat. Commun. 12 128
[27] Levring J, Terry D S, Kilic Z, Fitzgerald G, Blanchard S, Chen J 2023 Nature 616 606
[28] Tokunaga M, Imamoto N, Sakata-Sogawa K 2008 Nature Methods 5 159
[29] Sasmal D K, Yadav R, Lu H P 2016 J. Am. Chem. Soc. 138 8789
[30] Sasmal D K, Lu H P 2014 J. Am. Chem. Soc. 136 12998
[31] Hilgemann D W, Lu C C 1998 Ion Channels, Pt B 293 267
[32] Couey J J, Ryan D P, Glover J T, Dreixler J C, Young J B, Houamed K M 2002 Neurosci. Lett. 329 17
[33] Lee C H, Wallace D C, Burke P J 2024 Mitochondrial communications 2 38
[34] Icha J, Weber M, Waters J C, Norden C 2017 Bioessays 39 1700003
[35] Syeda R, Xu J, Dubin A E, Coste B, Mathur J, Truc H, Matzen J, Lao J, Tully D C, Engels I H, Petrassi H M, Schumacher A M, Montal M, Bandell M, Patapoutian A 2015 Elife 4 e07369
[36] Yang Z, Zhou S H, Zhang Q Y, Song Z C, Liu W W, Sun Y, Wang M W, Fu X L, Zhu K K, Guan Y, Qi J Y, Wang X H, Sun Y N, Lu Y, Ping Y Q, Xi Y T, Teng Z X, Xu L, Xiao P, Xu Z G, Xiong W, Qin W, Yang W, Yi F, Chai R J, Yu X, Sun J P 2025 Cell Res. 35 243
计量
- 文章访问数: 166
- PDF下载量: 5
- 被引次数: 0