搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自校验的单像素成像系统动态干扰去除方法

张健 陈家霖 陈笑然 冒添逸 沈姗姗 何睿清

引用本文:
Citation:

基于自校验的单像素成像系统动态干扰去除方法

张健, 陈家霖, 陈笑然, 冒添逸, 沈姗姗, 何睿清

Dynamic occlusion removal in single-pixel imaging system based on self-check

Zhang Jian, Chen Jia-Lin, Chen Xiao-Ran, Mao Tian-Yi, Shen Shan-Shan, He Rui-Qing
PDF
HTML
导出引用
  • 单像素成像系统通过对目标场景的多次调制, 获取相应的单像素测量值, 并由此重构图像. 在这一过程中, 如果其他物体侵入成像场景, 会严重影响测量值的准确性, 降低重构图像质量. 由于侵入物体的反射率, 形态均具有一定的随机性, 因此从桶探测器信号的角度很难有效分离出受干扰信号. 针对这一问题, 基于哈达玛矩阵的特征, 提出了一套自校验方法, 即利用桶探测器自身测量值进行正确性校验, 筛选出未受干扰的桶探测器信号, 显著提升了重构图像的质量. 该方法适用于一般性成像场景, 且不需要引入额外的调制图像辅助校验, 有力推动了单像素成像技术的实用化进程.
    Single-pixel imaging (SPI) system modulates the object with a series of patterns, records the corresponding measurements of a bucket detector and forms an image by the algorithm of compressed sensing. In this process, if other objects enter into the field of view of SPI, the accuracy of measurement will be seriously affected, and the quality of the reconstructed image will decrease. Owing to the randomness of the reflectivity and shape of the occlusion, it is difficult to effectively separate the disturbed part from the bucket detector signal. To solve this problem, we propose a self-check method based on the characteristics of Hadamard matrix, that is, using the measurement values of bucket detector to verify the correctness of signal. Usually when using the Hadamard matrix as the measurement matrix in SPI, it is divided into complementary positive pattern and negative pattern. The measurements of these two patterns are subtracted to form the image (the difference value marked by $ l $). Owing to the complementarity of the two patterns, the sum of the corresponding measurements should be a constant (marked by $ u $). When dynamic occlusion appears, the value of $ u $ will fluctuate significantly, so we choose $ u $ as the standard to judge whether an occlusion appears. In order to reduce the influence of other factors (such as system noise or fluctuation of the illumination) in the imaging process, we further propose a dynamic occlusion removal method based on the statistical histogram of the values of $ u $. We first find the position of the maximum value in the histogram, and then expand from this position to both sides of the histogram. We calculate the area of the expanded region, and stop the expansion when this area is greater than the threshold. Then the $ l $ corresponding to $ u $ in the expanded region is the measured value without interference. Experiments show that this method can retain the undisturbed signals of the bucket detector and significantly improve the quality of the reconstructed image. This method is simple and effective, and it is also suitable for general imaging scenes. More importantly, it does not need to introduce additional patterns for verification, which effectively promotes the practical process of single pixel imaging technology.
      通信作者: 何睿清, njheruiqing@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: 61905108, 62005128, 62205144)、江苏省高等学校自然科学研究项目(批准号: 19KJB140010)和南京工程学院校级科研基金(批准号: YKJ201868)资助的课题.
      Corresponding author: He Rui-Qing, njheruiqing@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61905108, 62005128, 62205144), the Natural Science Research Project of the Jiangsu Higher Education Institutions, China (Grant No. 19KJB140010), and the Scientific Research Foundation of Nanjing Institute of Technology, China (Grant No. YKJ201868).
    [1]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar

    [2]

    Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601Google Scholar

    [3]

    Guo Q, Wang Y X, Chen H W, Chen M H, Yang S Y, Xie S Z 2017 Front. Inf. Tech. EL 18 1261Google Scholar

    [4]

    Yang Z H, Chen X, Zhao Z H, Song, M Y, Liu Y, Zhao Z D, Lei H D, Yu, Y J, Wu, L A 2022 Opt. Express 30 864Google Scholar

    [5]

    Sefi O, Klein Y, Strizhevsky E, Dolbnya, I. P, Shwartz S 2020 Opt. Express 28 24568Google Scholar

    [6]

    Liu S, Yao X R, Liu X F, Xu D Z, Wang X D, Liu B, Wang C, Zhai G J, Zhao Q 2019 Opt. Express 27 22138Google Scholar

    [7]

    Meyers R E, Deacon K S, Shih Y H 2011 Appl. Phys. Lett. 98 111115Google Scholar

    [8]

    Yang X, Liu Y, Mou X Y, Hu T Y, Yuan F, Cheng E 2021 Opt. Express 29 12010Google Scholar

    [9]

    Zhang C G, He W Q, Han B N, Liao M H, Lu D J, Peng X, Xu C 2019 Opt. Express 27 13469Google Scholar

    [10]

    Jiao S M, Feng J, Gao Y, Lei T, Yuan X C 2020 Opt. Express 28 7301Google Scholar

    [11]

    Tian N, Guo Q C, Wang A L, Xu D L, Fu L 2011 Opt. Lett. 36 3302Google Scholar

    [12]

    Ma Y Y, Yin Y K, Jiang S, Li X Y, Huang F, Sun B Q 2021 Opt. Lasers. Eng 140 106532Google Scholar

    [13]

    Li X Y, Yin Y K, He W Q, Liu X L, Tang Q J, Peng X 2021 Opt. Express 29 36675Google Scholar

    [14]

    Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE. Signal. Process. Mag 25 83Google Scholar

    [15]

    Vaz P G, Amaral D, Ferreira L F R, Morgado M, Cardoso J 2020 Opt. Express 28 11666Google Scholar

    [16]

    Zhang Z B, Wang X Y, Zheng G A, Zhong J G 2017 Opt. Express 25 19619Google Scholar

    [17]

    Sun M J, Meng L T, Edgar M P, Padgett M J, Radwell N 2017 Sci. Rep. 7 3464Google Scholar

    [18]

    Yu W K 2019 Sensors 19 4122Google Scholar

    [19]

    Yu W K, Liu Y M 2019 Sensors 19 5135Google Scholar

    [20]

    Jauregui-Sanchez Y, Clemente P, Latorre-Carmona P, Tajahuerce E, Lancis J 2018 Appl. Opt. 57 B67Google Scholar

    [21]

    Sun M. J, Xu Z H, Wu L A 2018 Opt. Lasers. Eng. 100 18Google Scholar

    [22]

    Jiang S, Li X Y, Zhang Z X, Jiang W J, Wang Y P, He G B, Wang Y R, Sun B Q 2019 Opt. Express 27 22499Google Scholar

    [23]

    Li C, Yin W, Jiang H, Zhang Y 2013 Comput Optim Appl. 56 507Google Scholar

  • 图 1  受干扰信号去除流程图 (a) ${\mathit{H}}_{\mathit{i}}^{+}$对应测量信号${y}_{i}^{+}$; (b) ${ {H}}_{i}^{-}$对应测量信号${y}_{i}^{-};$ (c) ${ {H}}_{i}$对应的自校验信号$ {u}_{i}; $ (d) ${ {H}}_{i}$对应的用于重构的信号$ {l}_{i} $; (e) $ {u}_{i} $的统计直方图, 红色区域表示已经生长的区域, 黄色箭头表示生长方向, 蓝色区域表示未生长区域; (f) 使用本文算法后的$ {u}_{i} $统计直方图, 红色、蓝色区域分别表示正确和受干扰的桶探测器数值范围; (g), (h)分别是使用本文算法筛选后的$ {u}_{i} $$ {l}_{i} $, 红色和蓝色分别表示正确和错误测量值, 黄色色块表示真实干扰存在的帧数

    Fig. 1.  Flowchart of abnormal signal removal: (a) ${y}_{i}^{+}$, measurement value of the pattern ${ {H}}_{i}^{+}$; (b) ${y}_{i}^{-}$, measurement value of the pattern ${ {H}}_{i}^{-}$; (c) $ {u}_{i} $, the signal for self-check, corresponding to $ {\mathit{H}}_{i} $; (d) $ {l}_{i} $, the signal for reconstruction, corresponding to $ {\mathit{H}}_{i} $; (e) statistical histogram of $ {u}_{i} $; red areas indicate the area that have grown, yellow arrows indicate growth direction, blue areas indicate ungrown areas; (f) statistical histogram of $ {u}_{i} $ obtained by the proposed algorithm in this paper, the red and blue areas represent the ranges of correct and disturbed bucket detector value respectively; (g), (h) $ {u}_{i} $ and $ {l}_{i} $ obtained by the proposed algorithm in this paper, respectively, red and blue dots indicate correct and incorrect measurements, respectively, the yellow color block indicates the number of frames where the real occlusion exists.

    图 2  成像系统示意图 (a)成像系统; (b)场景1无干扰情况下的重构图像; (c)场景2无干扰情况下的重构图像; (d1), (d2) 场景1, 2无干扰时$ {u}_{i} $曲线; (d3), (d4) 场景1, 2无干扰时$ {l}_{i} $曲线; (e)干扰物为黑布时, 目标成像过程中的遮挡情况; (f1)—(f3)干扰物(A4纸、黑绒布、彩色水果图案)

    Fig. 2.  Schematic diagram of imaging system: (a) Imaging system; (b) reconstructed image of scene 1 without occlusion; (c) reconstructed image of scene 2 without occlusion; (d1), (d2) $ {u}_{i} $, curves of scene 1 and 2 respectively; (d3), (d4) $ {l}_{i} $, curves of scene 1 and 2 respectively; (e) occlusion (black cloth) during single-pixel imaging; (f1)–(f3) occlusion (A4 paper, black cloth and color fruit pattern).

    图 3  场景1重构情况 (a1)—(f1)未去除干扰的重构图像; (a2)—(f2)去除干扰后的重构图像; (a3)—(f3) $ {u}_{i} $的统计直方图; (a4)—(f4) $ {u}_{i} $强度值; (a5)—(f5) $ {l}_{i} $强度值; 图中红色表示使用本方法得到的正确桶探测器检验值$ {u}_{i} $(直方图中为$ {u}_{i} $的强度范围)和用于重构的强度值$ {l}_{i} $, 蓝色表示由本方法得到的干扰值

    Fig. 3.  Reconstruction in scene 1: (a1)–(f1) Reconstructed image without removing occlusion; (a2)–(f2) reconstructed image after removing occlusion; (a3)–(f3) statistical histogram of $ {u}_{i} $; (a4)–(f4) $ {u}_{i} $ value; (a5)–(f5) $ {l}_{i} $ value; in the figure, red represents the correct value of $ {u}_{i} $ (or the intensity range of $ {u}_{i} $ in the histogram) and the value of $ {l}_{i} $ used for reconstruction, while blue one represents the wrong values.

    图 4  场景2重构情况 (a1)—(f1)未去除干扰的重构图像; (a2)—(f2)去除干扰后的重构图像; (a3)—(f3) $ {u}_{i} $的统计直方图; (a4)—(f4) $ {u}_{i} $强度值; (a5)—(f5) $ {l}_{i} $强度值; 图中红色表示使用本方法得到的正确桶探测器检验值$ {u}_{i} $(直方图中为$ {u}_{i} $的强度范围)和用于重构的强度值$ {l}_{i} $, 蓝色表示由本方法得到的干扰值

    Fig. 4.  Reconstruction in scene 2: (a1)–(f1) Reconstructed image without removing occlusion; (a2)–(f2) reconstructed image after removing occlusion; (a3)–(f3) statistical histogram of $ {u}_{i} $; (a4)–(f4) $ {u}_{i} $ value; (a5)–(f5) $ {l}_{i} $ value; the red curves represents the correct value of $ {u}_{i} $ (or the intensity range of $ {u}_{i} $ in the histogram) and the value of $ {l}_{i} $ used for reconstruction, while blue one represents the wrong values.

    图 5  多种干扰条件下的单像素系统抗干扰能力测试 (a1), (b1)未去除干扰的重构图像; (a2), (b2)去除干扰后的重构图像; (a3), (b3)$ {u}_{i} $的统计直方图; (a4), (b4)$ {u}_{i} $强度值; (a5), (b.5)$ {l}_{i} $强度值; 图中红色表示使用本方法得到的正确桶探测器检验值$ {u}_{i} $(直方图中为$ {u}_{i} $的强度范围)和用于重构的强度值$ {l}_{i} $, 蓝色表示由本方法得到的干扰值

    Fig. 5.  Test of dynamic occlusion removal under various occlusion conditions: (a1), (b1) Reconstructed image without removing occlusion; (a2), (b2) reconstructed image after removing occlusion; (a3), (b3) statistical histogram of $ {u}_{i} $; (a4), (b4) the value of $ {u}_{i} $; (a5), (b5) the value of $ {l}_{i} $; the red curves represents the correct value of $ {u}_{i} $ (or the intensity range of $ {u}_{i} $ in the histogram) and the value of $ {l}_{i} $ used for reconstruction, while blue one represents the wrong values.

  • [1]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar

    [2]

    Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601Google Scholar

    [3]

    Guo Q, Wang Y X, Chen H W, Chen M H, Yang S Y, Xie S Z 2017 Front. Inf. Tech. EL 18 1261Google Scholar

    [4]

    Yang Z H, Chen X, Zhao Z H, Song, M Y, Liu Y, Zhao Z D, Lei H D, Yu, Y J, Wu, L A 2022 Opt. Express 30 864Google Scholar

    [5]

    Sefi O, Klein Y, Strizhevsky E, Dolbnya, I. P, Shwartz S 2020 Opt. Express 28 24568Google Scholar

    [6]

    Liu S, Yao X R, Liu X F, Xu D Z, Wang X D, Liu B, Wang C, Zhai G J, Zhao Q 2019 Opt. Express 27 22138Google Scholar

    [7]

    Meyers R E, Deacon K S, Shih Y H 2011 Appl. Phys. Lett. 98 111115Google Scholar

    [8]

    Yang X, Liu Y, Mou X Y, Hu T Y, Yuan F, Cheng E 2021 Opt. Express 29 12010Google Scholar

    [9]

    Zhang C G, He W Q, Han B N, Liao M H, Lu D J, Peng X, Xu C 2019 Opt. Express 27 13469Google Scholar

    [10]

    Jiao S M, Feng J, Gao Y, Lei T, Yuan X C 2020 Opt. Express 28 7301Google Scholar

    [11]

    Tian N, Guo Q C, Wang A L, Xu D L, Fu L 2011 Opt. Lett. 36 3302Google Scholar

    [12]

    Ma Y Y, Yin Y K, Jiang S, Li X Y, Huang F, Sun B Q 2021 Opt. Lasers. Eng 140 106532Google Scholar

    [13]

    Li X Y, Yin Y K, He W Q, Liu X L, Tang Q J, Peng X 2021 Opt. Express 29 36675Google Scholar

    [14]

    Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE. Signal. Process. Mag 25 83Google Scholar

    [15]

    Vaz P G, Amaral D, Ferreira L F R, Morgado M, Cardoso J 2020 Opt. Express 28 11666Google Scholar

    [16]

    Zhang Z B, Wang X Y, Zheng G A, Zhong J G 2017 Opt. Express 25 19619Google Scholar

    [17]

    Sun M J, Meng L T, Edgar M P, Padgett M J, Radwell N 2017 Sci. Rep. 7 3464Google Scholar

    [18]

    Yu W K 2019 Sensors 19 4122Google Scholar

    [19]

    Yu W K, Liu Y M 2019 Sensors 19 5135Google Scholar

    [20]

    Jauregui-Sanchez Y, Clemente P, Latorre-Carmona P, Tajahuerce E, Lancis J 2018 Appl. Opt. 57 B67Google Scholar

    [21]

    Sun M. J, Xu Z H, Wu L A 2018 Opt. Lasers. Eng. 100 18Google Scholar

    [22]

    Jiang S, Li X Y, Zhang Z X, Jiang W J, Wang Y P, He G B, Wang Y R, Sun B Q 2019 Opt. Express 27 22499Google Scholar

    [23]

    Li C, Yin W, Jiang H, Zhang Y 2013 Comput Optim Appl. 56 507Google Scholar

  • [1] 贺芷椰, 张彦东, 唐春华, 李军利, 李四维, 于斌. 中继透镜分辨率在像素编码曝光成像中对图像重构质量的影响分析. 物理学报, 2023, 72(2): 024201. doi: 10.7498/aps.72.20221588
    [2] 廖涌泉, 张晓雪, 刘卉, 朱香渝, 陈旭东, 林志立. 基于数字微镜器件超像素法实现散射介质传输矩阵的自参考干涉测量. 物理学报, 2023, 72(22): 224201. doi: 10.7498/aps.72.20230660
    [3] 马璐瑶, 张兴雨, 舒志运, 肖游, 张天柱, 李浩, 尤立星. 自差分交流偏置超导纳米线单光子探测器. 物理学报, 2022, 71(15): 158501. doi: 10.7498/aps.71.20220373
    [4] 胡金虎, 林丹樱, 张炜, 张晨爽, 屈军乐, 于斌. 结合虚拟单像素成像解卷积的双边照明光片荧光显微技术. 物理学报, 2022, 71(2): 028701. doi: 10.7498/aps.71.20211358
    [5] 黄典, 戴万霖, 王轶文, 贺青, 韦联福. 超导动态电感单光子探测器的噪声处理. 物理学报, 2021, 70(14): 140703. doi: 10.7498/aps.70.20210185
    [6] 唐鹏博, 王关晴, 王路, 石中玉, 李源, 徐江荣. 单液滴正碰球面动态行为特性实验研究. 物理学报, 2020, 69(2): 024702. doi: 10.7498/aps.69.20191141
    [7] 李明飞, 阎璐, 杨然, 寇军, 刘院省. 日光强度涨落自关联消湍流成像. 物理学报, 2019, 68(9): 094204. doi: 10.7498/aps.68.20182181
    [8] 李明飞, 阎璐, 杨然, 刘院省. 基于Hadamard矩阵优化排序的快速单像素成像. 物理学报, 2019, 68(6): 064202. doi: 10.7498/aps.68.20181886
    [9] 姚伟强, 黄文浩, 杨初平. 单像素探测频谱重构成像理论分析. 物理学报, 2017, 66(3): 034201. doi: 10.7498/aps.66.034201
    [10] 李兆国, 孟令彪, 周民杰, 刁凯迪, 易勇, 朱效立, 吴卫东, 张继成. 自支撑二值化Beynon-Gabor波带片的制备及其单级聚焦特性. 物理学报, 2016, 65(12): 124207. doi: 10.7498/aps.65.124207
    [11] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [12] 李明飞, 莫小范, 赵连洁, 霍娟, 杨然, 李凯, 张安宁. 基于Walsh-Hadamard变换的单像素遥感成像. 物理学报, 2016, 65(6): 064201. doi: 10.7498/aps.65.064201
    [13] 冯忠奎, 胡格丽, 许莹, 朱光, 周峰, 戴银明, 王秋良. 开放式自屏蔽全身成像高场超导MRI磁体优化设计. 物理学报, 2013, 62(23): 230701. doi: 10.7498/aps.62.230701
    [14] 倪志鹏, 王秋良, 严陆光. 短腔、自屏蔽磁共振成像超导磁体系统的混合优化设计方法. 物理学报, 2013, 62(2): 020701. doi: 10.7498/aps.62.020701
    [15] 全军, T. C. Au Yeung, 邵乐喜. 基于自洽输运理论的介观体系动态电导的研究. 物理学报, 2011, 60(8): 087201. doi: 10.7498/aps.60.087201
    [16] 张兴华, 赵宝升, 缪震华, 朱香平, 刘永安, 邹 玮. 紫外单光子成像系统的研究. 物理学报, 2008, 57(7): 4238-4243. doi: 10.7498/aps.57.4238
    [17] 刘思敏, 汪大云, 赵红娥, 李祖斌, 郭儒, 陆猗, 黄春福, 高垣梅. 从自散焦到自聚焦的动态转换和相位共轭亮空间孤子. 物理学报, 2002, 51(12): 2761-2766. doi: 10.7498/aps.51.2761
    [18] 汪芙平, 郭静波, 王赞基, 萧达川, 李茂堂. 强混沌干扰中的谐波信号提取. 物理学报, 2001, 50(6): 1019-1023. doi: 10.7498/aps.50.1019
    [19] 江瑛, 刘思敏, 温海东, 张心正, 郭儒, 陈晓虎, 许京军, 张光寅. 光生伏打LiNbO3:Fe晶体从自散焦到等效“自聚焦”的动态转换. 物理学报, 2001, 50(3): 483-488. doi: 10.7498/aps.50.483
    [20] 王小刚. 铝中单空位正电子态的完全自洽计算. 物理学报, 1993, 42(11): 1836-1844. doi: 10.7498/aps.42.1836
计量
  • 文章访问数:  2910
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-05
  • 修回日期:  2022-11-07
  • 上网日期:  2022-11-19
  • 刊出日期:  2023-02-05

/

返回文章
返回