搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Walsh-Hadamard变换的单像素遥感成像

李明飞 莫小范 赵连洁 霍娟 杨然 李凯 张安宁

引用本文:
Citation:

基于Walsh-Hadamard变换的单像素遥感成像

李明飞, 莫小范, 赵连洁, 霍娟, 杨然, 李凯, 张安宁

Single-pixel remote imaging based on Walsh-Hadamard transform

Li Ming-Fei, Mo Xiao-Fan, Zhao Lian-Jie, Huo Juan, Yang Ran, Li Kai, Zhang An-Ning
PDF
导出引用
  • 本文提出了基于Walsh-Hadamard变换的单像素成像方案, 并从理论分析、模拟仿真和实验验证三方面分别验证了该方案的可行性. 实验上实现了350-900 nm波段对 距离500 m和5000 m自然目标的128128 像素成像, 成像速度0.5帧/秒. 研究并讨论了单像素相机方案与计算量子成像方案的差异与共性, 在此基础上分析了基于Walsh-Hadamard变换的单像素成像方案的优势与局限性. 研究表明本方案同时适用于单像素相机和计算量子成像. 由于单像素成像适用于应用在如红外热成像、微波成像等波段, 因此在阵列探测器灵敏度或工艺达不到要求时存在优势. 本文所提出的方案使得单像素成像技术向实际应用迈进了一步.
    Single-pixel imaging has become a topic of intense interest amongst theoreticians and experimentalists in recent years, and is still attracting great attention due to its potential applications in biomedical imaging, remote sensing, defence monitoring, etc. Two main fields should be involved in single-pixel imaging scheme: single-pixel camera and computational quantum imaging, which are proposed in the year 2006 and 2008, respectively. Although these two single-pixel imaging schemes belong to different research fields, they are nearly identical in the realization setup and using the similar image recovering algorithm. The single-pixel camera scheme is mainly based on compressive sensing algorithms, which can recover the image with about 30 percent measurements of its total pixels (raster scan method), but need the prior knowledge of the image. While the computational quantum imaging method usually recovers the image by using the second-order correlation function, which is computational fast but need more measurements to retrieve a high quality image. Thus, both the methods mentioned above are time consuming. In this paper, a single-pixel imaging scheme based on Walsh-Hadamard transform is proposed and is demonstrated both theoretically and experimentally. The retrieving times of different algorithms are discussed and compared with each other. An image of 10241024 pixels can be acquired around 1 second with our method while it will take 8 seconds by using TVAL3 algorithm on the general computer in our numerical simulation experiment. It is also experimentally demonstrated that the nature targets from 500 meters to 5000 meters away are acquired, with pixels of 128128 and in the waveband of 350-900 nm, and the speed of the imaging frame rate is achieved at 0.5 frame per second. The differences and commons between single-pixel imaging and computational quantum imaging are also discussed in this article. It is found that the Walsh-Hadamard transform we proposed is stable and can be sufficiently saving the imaging time of the single-pixel imaging schemes while maintaining a high imaging quality. Moreover, the single-pixel remote imaging scheme can be used in other wave band such as infrared and micro wave imaging, or will be useful in the case when the array detector technique is difficult to meet the requirements such as the sensitivity or the volume. And our scheme proposed here can make the single-pixel imaging technique step further toward its real applications.
      通信作者: 张安宁, mf_li@sina.cn
    • 基金项目: 国家自然科学基金 (批准号:11204011, 11304007, 60907031, 61501015)资助的课题.
      Corresponding author: Zhang An-Ning, mf_li@sina.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204011, 11304007, 60907031, 61501015).
    [1]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 83429

    [2]

    Strekalov D V, Sergienko A V, Klyshko D N, Shih Y H 1995 Phys. Rev. Lett. 74 3600

    [3]

    Abouraddy A F, Saleh B E A, Sergienko A V, Teich M C 2001 Phys. Rev. Lett. 87 123602

    [4]

    Bennink R S, Benley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601

    [5]

    Chan K W C 2012 Opt. Lett. 37 2739

    [6]

    Shapiro J H 2008 Phys. Rev. A 76 061802

    [7]

    Duarte M, Davenport M, Takhar D, Laska J, Sun T, Kelly K, Baraniuk R 2008 IEEE Signal Process. Mag. 25 83

    [8]

    Gatti A, Brambilla E, Bache M, Lugiato L A 2004 Phys. Rev. Lett. 93 093602

    [9]

    Donoho D 2006 IEEE Trans. Inform. Theory 52 1289

    [10]

    Cheng J, Han S S 2004 Phys. Rev. Lett. 92 093903

    [11]

    Gong W L, Han S S 2009 arXiv preprint arXiv:0911.4750

    [12]

    Yao X R, Li L Z, Liu X F, Yu W K, Zhai G J 2015 Chin. Phys. B 24 044203

    [13]

    Bai Y F, Yang W X, Yu X Q 2012 Chin. Phys. B 21 044206

    [14]

    Cands E J 2006 in Proc. Int. Cong. Math., European Mathematical Society, Madrid, Spain 3 1433

    [15]

    Romberg J 2008 IEEE Signal Process. Mag. 25 14

    [16]

    Beer T 1981 Am. J. Phys. 49 Issue 5

    [17]

    Li Q, Zhou M L, Shi B C, Wang N C 1998 Chin. Sci. Bull. 43 627

    [18]

    Xing S H, Yang Y D, Wang X H 2015 Navigtion and Control 14 97 (in Chinese) [邢世宏, 杨晓东, 王小海 2015 导航与控制 14 97]

    [19]

    Welsh S S, Edgar M P, Bowman R, Jonathan P, Sun B Q, Padgett M J 2013 Opt. Express 21 23068

  • [1]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 83429

    [2]

    Strekalov D V, Sergienko A V, Klyshko D N, Shih Y H 1995 Phys. Rev. Lett. 74 3600

    [3]

    Abouraddy A F, Saleh B E A, Sergienko A V, Teich M C 2001 Phys. Rev. Lett. 87 123602

    [4]

    Bennink R S, Benley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601

    [5]

    Chan K W C 2012 Opt. Lett. 37 2739

    [6]

    Shapiro J H 2008 Phys. Rev. A 76 061802

    [7]

    Duarte M, Davenport M, Takhar D, Laska J, Sun T, Kelly K, Baraniuk R 2008 IEEE Signal Process. Mag. 25 83

    [8]

    Gatti A, Brambilla E, Bache M, Lugiato L A 2004 Phys. Rev. Lett. 93 093602

    [9]

    Donoho D 2006 IEEE Trans. Inform. Theory 52 1289

    [10]

    Cheng J, Han S S 2004 Phys. Rev. Lett. 92 093903

    [11]

    Gong W L, Han S S 2009 arXiv preprint arXiv:0911.4750

    [12]

    Yao X R, Li L Z, Liu X F, Yu W K, Zhai G J 2015 Chin. Phys. B 24 044203

    [13]

    Bai Y F, Yang W X, Yu X Q 2012 Chin. Phys. B 21 044206

    [14]

    Cands E J 2006 in Proc. Int. Cong. Math., European Mathematical Society, Madrid, Spain 3 1433

    [15]

    Romberg J 2008 IEEE Signal Process. Mag. 25 14

    [16]

    Beer T 1981 Am. J. Phys. 49 Issue 5

    [17]

    Li Q, Zhou M L, Shi B C, Wang N C 1998 Chin. Sci. Bull. 43 627

    [18]

    Xing S H, Yang Y D, Wang X H 2015 Navigtion and Control 14 97 (in Chinese) [邢世宏, 杨晓东, 王小海 2015 导航与控制 14 97]

    [19]

    Welsh S S, Edgar M P, Bowman R, Jonathan P, Sun B Q, Padgett M J 2013 Opt. Express 21 23068

  • [1] 应大卫, 张思慧, 邓书金, 武海斌. 基于机器学习的单拍冷原子成像. 物理学报, 2023, 72(14): 144201. doi: 10.7498/aps.72.20230449
    [2] 贺芷椰, 张彦东, 唐春华, 李军利, 李四维, 于斌. 中继透镜分辨率在像素编码曝光成像中对图像重构质量的影响分析. 物理学报, 2023, 72(2): 024201. doi: 10.7498/aps.72.20221588
    [3] 何小安, 杨家敏, 黎宇坤, 李晋, 熊刚. 软X射线条纹相机CsI光阴极响应灵敏度的理论计算. 物理学报, 2023, 72(24): 245203. doi: 10.7498/aps.72.20231043
    [4] 张健, 陈家霖, 陈笑然, 冒添逸, 沈姗姗, 何睿清. 基于自校验的单像素成像系统动态干扰去除方法. 物理学报, 2023, 72(3): 034201. doi: 10.7498/aps.72.20221918
    [5] 胡金虎, 林丹樱, 张炜, 张晨爽, 屈军乐, 于斌. 结合虚拟单像素成像解卷积的双边照明光片荧光显微技术. 物理学报, 2022, 71(2): 028701. doi: 10.7498/aps.71.20211358
    [6] 宋张勇, 于得洋, 蔡晓红. 康普顿相机的成像分辨分析与模拟. 物理学报, 2019, 68(11): 118701. doi: 10.7498/aps.68.20182245
    [7] 李明飞, 阎璐, 杨然, 刘院省. 基于Hadamard矩阵优化排序的快速单像素成像. 物理学报, 2019, 68(6): 064202. doi: 10.7498/aps.68.20181886
    [8] 范桁. 量子计算与量子模拟. 物理学报, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [9] 姚伟强, 黄文浩, 杨初平. 单像素探测频谱重构成像理论分析. 物理学报, 2017, 66(3): 034201. doi: 10.7498/aps.66.034201
    [10] 陈勇, 赵惠昌, 陈思, 张淑宁. 基于分数阶傅里叶变换的弹载SAR成像算法. 物理学报, 2014, 63(11): 118403. doi: 10.7498/aps.63.118403
    [11] 李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵. 静态傅里叶变换超光谱全偏振成像技术. 物理学报, 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [12] 王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞. 无透镜傅里叶变换显微数字全息成像系统的焦深. 物理学报, 2012, 61(4): 044208. doi: 10.7498/aps.61.044208
    [13] 李园, 窦秀明, 常秀英, 倪海桥, 牛智川, 孙宝权. 基于InAs单量子点的单光子干涉. 物理学报, 2011, 60(3): 037809. doi: 10.7498/aps.60.037809
    [14] 代秋声, 漆玉金. 针孔单光子发射计算机断层成像的空间分辨率研究. 物理学报, 2010, 59(2): 1357-1365. doi: 10.7498/aps.59.1357
    [15] 张兴华, 赵宝升, 刘永安, 缪震华, 朱香平, 赵菲菲. 紫外单光子成像系统增益特性研究. 物理学报, 2009, 58(3): 1779-1784. doi: 10.7498/aps.58.1779
    [16] 张兴华, 赵宝升, 缪震华, 朱香平, 刘永安, 邹 玮. 紫外单光子成像系统的研究. 物理学报, 2008, 57(7): 4238-4243. doi: 10.7498/aps.57.4238
    [17] 李 宏, 王炜路, 公丕锋. 单量子阱的自旋电流. 物理学报, 2007, 56(4): 2405-2408. doi: 10.7498/aps.56.2405
    [18] 王玉堂, 李秀英, 姜长山, 陈岩松. 利用单个元件实现相干光Walsh变换. 物理学报, 1984, 33(11): 1599-1604. doi: 10.7498/aps.33.1599
    [19] 杨国桢, 潘少华. Walsh 变换光学实现的一种方案. 物理学报, 1980, 29(10): 1301-1306. doi: 10.7498/aps.29.1301
    [20] 陈岩松, 王玉堂, 李秀英. 用相干光实现Walsh变换. 物理学报, 1980, 29(10): 1307-1314. doi: 10.7498/aps.29.1307
计量
  • 文章访问数:  10035
  • PDF下载量:  500
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-13
  • 修回日期:  2015-11-30
  • 刊出日期:  2016-03-05

/

返回文章
返回