搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

康普顿相机的成像分辨分析与模拟

宋张勇 于得洋 蔡晓红

引用本文:
Citation:

康普顿相机的成像分辨分析与模拟

宋张勇, 于得洋, 蔡晓红

Analysis and simultion for Compton camera′s imaging resolution

Song Zhang-Yong, Yu De-Yang, Cai Xiao-Hong
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 相较于传统的$\gamma$射线的成像系统, 康普顿相机的高效率优势使其在重离子放疗的实时监测中极具潜力. 中科院近代物理研究所已经建成一座具有完全知识产权的重离子治癌示范装置, 且正在进行全国范围的推广. 鉴于重离子治癌的广阔前景, 本工作对康普顿相机的成像分辨本领进行了分析和Geant 4模拟, 并根据反投影算法进行了图像重建. 分析及模拟结果显示, 当探测单元的位置分辨为2 mm, 其导致的成像分辨与能量分辨为5%时导致的成像分辨相差约10%. 对于几百keV的$\gamma$射线, 探测器的相对能量分辨很容易好于1.0%. 因此, 相较于能量分辨, 探测晶体单元的位置分辨本领对重建图像的质量起主导作用.
    Compared with traditional gamma-ray imaging equipment, the Compton camera is a very promising imaging device in nuclear medicine and molecular imaging, and has a strong potential application in monitoring beams in heavy-ion-therapy because of its high efficiency feature. A demonstration device for heavy ion cancer treatment with complete intellectual property right has been built at Institute of Modern Physics, Chinese Academy of Sciences in Wuwei city of Gansu Province. At present the device is being up-graded, and the heavy ion cancer treatment is being generalized in national wide. In view of the broad prospects of heavy ion cancer treatment, the imaging resolution of Compton camera is analyzed theoretically, and three errors effecting the imaging resolution, which are energy resolution, position resolution of detector and the Doppler effect, are determined. Then the three errors are simulated by using the Geant 4 packages. The physical process in simulation is selected as the G4EMPenelopePhysics model, which makes the atomic shell cross section data for low energy physical process used directly. The Compton camera geometry consists of two layers of detectors. The layer close to $\gamma$ source is called detector and the other one is called absorption detector. The material of scatter detector is selected as low-Z silicon and carbon, and the absorb detector is high-Z germanium. The thickness value of scatter detector and absorb detector are both 20 mm. The spacing between the two layers is 100 mm. The simulation results by Geant 4 are used to reconstruct the image of point-like $\gamma$ source through using the back-projection algorithm. The simulation results and the re-constructed images indicate that the difference between the image full width at half maximum induced by 2 mm position resolution and that induced by 5.0% relative energy resolution of scatter detector is about 10%, and amount to that by the Doppler effect of Silicon. For the $\gamma$ ray with energies of several hundred keV, the energy resolution of Si detectors is easily better than 1.0% in practice. Therefore, the detector's position resolution dominates the image quality of the Compton camera. Considering the Doppler effect, manufacturing techniques and imaging efficiency, 2.0 mm-sized crystal unit and 1.0% energy resolution power is suggested for practically manufacturing the Compton camera.
      通信作者: 宋张勇, songzhy@impcas.ac.cn ; 蔡晓红, caixh@impcas.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11675279)和“西部之光”项目资助的课题.
      Corresponding author: Song Zhang-Yong, songzhy@impcas.ac.cn ; Cai Xiao-Hong, caixh@impcas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675279) and the Program of "Light of the West", China.
    [1]

    Parodi K 2016 Nucl. Instrum. Meth. A 809 113Google Scholar

    [2]

    Shakirin G, Braess H, Fiedler F, et al. 2011 Phys. Med. Biol. 56 1281Google Scholar

    [3]

    Enghardt W, Crespo P, Fiedler F, et al. 2004 Nucl. Instrum. Meth. A 525 284Google Scholar

    [4]

    Nishio T, Ogino T, Nomura K, et al. 2006 Med. Phys. 33 4190Google Scholar

    [5]

    Amaldi U, Hajdas W, Iliescu S, et al. 2010 Nucl. Instrum. Meth. A 617 248Google Scholar

    [6]

    Henriquet P, Testa E, Chevallier M, et al. 2012 Phys. Med. Biol. 57 4655Google Scholar

    [7]

    Agodi C, Battistoni G, Bellini F, et al. 2012 Phys. Med. Biol. 57 5667Google Scholar

    [8]

    Gwosch K, Hartmann B, Jakubek J, et al. 2013 Phys. Med. Biol. 58 3755Google Scholar

    [9]

    Borm V, Joulaeizadeh L, Beekman F, et al. 2012 Phys. Med. Biol. 57 297Google Scholar

    [10]

    Testa M, Bajard M, Chevallier M, et al. 2010 Radiat. Environ. Biophy. 49 337Google Scholar

    [11]

    Krimmer J, Ley J L, Abellan C, et al. 2015 Nucl. Instrum. Meth. A 787 98Google Scholar

    [12]

    Peterson S W, Robertson D, Polf J, et al. 2010 Phys. Med. Biol. 55 6841Google Scholar

    [13]

    Seo H, Park J H, Ushakov A, et al. 2011 J. Instrum. 6 C01024

    [14]

    Kurosawa S, Kubo H, Ueno K, et al. 2012 Curr. Appl. Phys. 12 364Google Scholar

    [15]

    Kormoll T, Fiedler F, Schone S, et al. 2011 Nucl. Instrum. Meth. A 626−627 114Google Scholar

    [16]

    Llosa G, Cabello J, Callier S, et al. 2013 Nucl. Instrum. Meth. A 718 130Google Scholar

    [17]

    Schoenfelder V, Himer A, Schneider K, et al. 1973 Nucl. Instrum. Meth. 107 385Google Scholar

    [18]

    Todd R W, Nightingale J M, Everett D B, et al. 1974 Nature 251 132Google Scholar

  • 图 1  康普顿相机成像原理示意图

    Fig. 1.  Sketch of imaging principle of a Compton camera.

    图 3  康普顿散射角不确定度$ \Delta\theta_{\rm E} $分布的模拟结果, 相对能量分辨为1.0%, 初始$\gamma$射线能量分别为100 和1000 keV

    Fig. 3.  Simulated distribution of $ \Delta\theta_{\rm E} $. The relative energy resolution is fitted to 1.0%, the initial $\gamma$-ray energy is 100 and 1000 keV, respectively.

    图 2  康普顿相机的能量分辨本领引起的康普顿散射角不确定度$ \Delta\theta_{\rm E} $分布的模拟结果, 相对能量分辨$\Delta E/E$取值从0.3%至5%, 初始$\gamma$射线能量为600 keV

    Fig. 2.  Simulated distribution of the uncertainty of Compton scattering angle caused by the resolving power of Compton camera. The value of $\Delta E/E$ is from 0.3% to 5%. The initial $\gamma$-ray energy is 600 keV.

    图 4  康普顿相机的位置分辨本领引起的康普顿散射角不确定度$ \Delta\theta_{\rm P} $分布的模拟结果, 位置分辨$\Delta x$取值范围为0.5—3.0 mm. 初始$\gamma$射线能量为600 keV

    Fig. 4.  Simulated distribution of the uncertainty of Compton scattering angle caused by the position resolving power of Compton camera. The value of $\Delta x$ is from 0.5 mm to 3.0 mm. The initial $\gamma$-ray energy is 600 keV.

    图 5  康普顿散射角不确定度$ \Delta\theta_{\rm C} $分布的模拟结果, 初始$\gamma$射线能量为600 keV, 散射材料分别为C和Si

    Fig. 5.  Simulated distribution of $ \Delta\theta_{\rm C} $. The initial $\gamma$ ray energy is 600 keV. The material of scattering detector is C and Si, respectively.

    图 7  当散射探测器的位置分辨为2.0 mm时, 对$\gamma$点源的反投影重建图像

    Fig. 7.  Image of point-like gamma source reconstructed by back-projection algorithm as position resolution of scatter detector is 2.0 mm.

    图 6  当散射探测器的相对能量分辨为1.0%时, 对$\gamma$点源的反投影重建图像

    Fig. 6.  Image of point-like gamma source reconstructed by back-projection algorithm as relative energy resolution of scatter detector is 1.0%.

    图 8  反投影法重建图像的FWHM随散射探测器分辨本领的变化 (a) 随相对能量分辨; (b) 随位置分辨

    Fig. 8.  FWHM for $\gamma$ image reconstructed by back-projection algorithm vs. (a) relative energy and (b) position resolution of scatter detector.

    图 9  只包含散射材料(Si晶体)的多普勒效应时, 对$\gamma$点源的反投影重建图像

    Fig. 9.  Image of point-like gamma source reconstructed by back-projection algorithm only including the Doppler effect of electrons bounded in scatter material.

  • [1]

    Parodi K 2016 Nucl. Instrum. Meth. A 809 113Google Scholar

    [2]

    Shakirin G, Braess H, Fiedler F, et al. 2011 Phys. Med. Biol. 56 1281Google Scholar

    [3]

    Enghardt W, Crespo P, Fiedler F, et al. 2004 Nucl. Instrum. Meth. A 525 284Google Scholar

    [4]

    Nishio T, Ogino T, Nomura K, et al. 2006 Med. Phys. 33 4190Google Scholar

    [5]

    Amaldi U, Hajdas W, Iliescu S, et al. 2010 Nucl. Instrum. Meth. A 617 248Google Scholar

    [6]

    Henriquet P, Testa E, Chevallier M, et al. 2012 Phys. Med. Biol. 57 4655Google Scholar

    [7]

    Agodi C, Battistoni G, Bellini F, et al. 2012 Phys. Med. Biol. 57 5667Google Scholar

    [8]

    Gwosch K, Hartmann B, Jakubek J, et al. 2013 Phys. Med. Biol. 58 3755Google Scholar

    [9]

    Borm V, Joulaeizadeh L, Beekman F, et al. 2012 Phys. Med. Biol. 57 297Google Scholar

    [10]

    Testa M, Bajard M, Chevallier M, et al. 2010 Radiat. Environ. Biophy. 49 337Google Scholar

    [11]

    Krimmer J, Ley J L, Abellan C, et al. 2015 Nucl. Instrum. Meth. A 787 98Google Scholar

    [12]

    Peterson S W, Robertson D, Polf J, et al. 2010 Phys. Med. Biol. 55 6841Google Scholar

    [13]

    Seo H, Park J H, Ushakov A, et al. 2011 J. Instrum. 6 C01024

    [14]

    Kurosawa S, Kubo H, Ueno K, et al. 2012 Curr. Appl. Phys. 12 364Google Scholar

    [15]

    Kormoll T, Fiedler F, Schone S, et al. 2011 Nucl. Instrum. Meth. A 626−627 114Google Scholar

    [16]

    Llosa G, Cabello J, Callier S, et al. 2013 Nucl. Instrum. Meth. A 718 130Google Scholar

    [17]

    Schoenfelder V, Himer A, Schneider K, et al. 1973 Nucl. Instrum. Meth. 107 385Google Scholar

    [18]

    Todd R W, Nightingale J M, Everett D B, et al. 1974 Nature 251 132Google Scholar

  • [1] 黄厚科, 汶伟强, 黄忠魁, 汪书兴, 汤梅堂, 李杰, 冒立军, 袁洋, 万梦宇, 刘畅, 汪寒冰, 周晓鹏, 赵冬梅, 严凯明, 周云斌, 原有进, 杨建成, 张少锋, 朱林繁, 马新文. 基于HIAF开展高电荷态重离子双电子复合谱精密测量的模拟研究. 物理学报, 2025, 74(4): 043101. doi: 10.7498/aps.74.20241589
    [2] 杨卫涛, 武艺琛, 许睿明, 时光, 宁提, 王斌, 刘欢, 郭仲杰, 喻松林, 吴龙胜. 碲镉汞红外焦平面阵列图像传感器空间质子位移损伤及电离总剂量效应Geant4仿真. 物理学报, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [3] 罗晓飞, 王波, 彭宽, 肖嘉莹. 基于聚焦声场模型的光声层析成像时间延迟快速校正反投影方法. 物理学报, 2022, 71(7): 078102. doi: 10.7498/aps.71.20212019
    [4] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [5] 白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会. 空间重离子入射磷化铟的位移损伤模拟. 物理学报, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [6] 董旭, 黄永盛, 唐光毅, 陈姗红, 司梅雨, 张建勇. 基于微波-电子康普顿背散射的环形正负电子对撞机束流能量测量方案. 物理学报, 2021, 70(13): 131301. doi: 10.7498/aps.70.20202081
    [7] 席晓琦, 韩玉, 李磊, 闫镔. 螺旋锥束计算机断层成像倾斜扇束反投影滤波局部重建算法. 物理学报, 2019, 68(8): 088701. doi: 10.7498/aps.68.20190055
    [8] 贾清刚, 张天奎, 许海波. 基于前冲康普顿电子高能伽马能谱测量系统设计. 物理学报, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [9] 马永朋, 赵小利, 刘亚伟, 徐龙泉, 康旭, 倪冬冬, 闫帅, 朱林繁, 杨科. NO与C2H2的康普顿轮廓研究. 物理学报, 2015, 64(15): 153302. doi: 10.7498/aps.64.153302
    [10] 古宇飞, 闫镔, 李磊, 魏峰, 韩玉, 陈健. 基于全变分最小化和交替方向法的康普顿散射成像重建算法. 物理学报, 2014, 63(1): 018701. doi: 10.7498/aps.63.018701
    [11] 张峰, 闫镔, 汪先超, 江桦, 魏星. 半覆盖锥束CT中扁平物体的高效反投影滤波重建. 物理学报, 2013, 62(16): 168702. doi: 10.7498/aps.62.168702
    [12] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算. 物理学报, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [13] 葛愉成. 激光-电子康普顿散射物理特性研究. 物理学报, 2009, 58(5): 3094-3103. doi: 10.7498/aps.58.3094
    [14] 魏 群, 杨子元, 王参军, 许启明. 轴对称晶场中d3离子激发态对4A2基态自旋哈密顿参量的影响. 物理学报, 2007, 56(1): 507-511. doi: 10.7498/aps.56.507
    [15] 郭文琼, 周晓军, 张雄军, 隋 展, 吴登生. 等离子体电极普克尔盒电光开关单脉冲过程数值模拟. 物理学报, 2006, 55(7): 3519-3523. doi: 10.7498/aps.55.3519
    [16] 杨子元, 郝 跃. 四角对称晶场中4B1(3d3)态离子的磁相互作用及其自旋哈密顿参量研究. 物理学报, 2005, 54(6): 2883-2892. doi: 10.7498/aps.54.2883
    [17] 王克明, 时伯荣, 曲保东, 王忠烈. MeV重离子在固体靶中的平均投影射程计算. 物理学报, 1992, 41(11): 1820-1824. doi: 10.7498/aps.41.1820
    [18] 夏日源, 杨洪, 谭春雨, 李金华. 化合物和合金中离子投影射程分布矩的计算(Ⅰ)——重离子(Z1>10)的射程分布矩. 物理学报, 1983, 32(4): 423-445. doi: 10.7498/aps.32.423
    [19] 吕景发. 在相对论性电子上康普顿散射的极化自旋关联现象. 物理学报, 1965, 21(11): 1927-1932. doi: 10.7498/aps.21.1927
    [20] 徐永昌, 郑林生. 在γ-γ符合测量中康普顿散射所引起的符合. 物理学报, 1958, 14(2): 114-120. doi: 10.7498/aps.14.114
计量
  • 文章访问数:  11600
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-21
  • 修回日期:  2019-03-15
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回