搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NO与C2H2的康普顿轮廓研究

马永朋 赵小利 刘亚伟 徐龙泉 康旭 倪冬冬 闫帅 朱林繁 杨科

引用本文:
Citation:

NO与C2H2的康普顿轮廓研究

马永朋, 赵小利, 刘亚伟, 徐龙泉, 康旭, 倪冬冬, 闫帅, 朱林繁, 杨科

Investigation of Compton profiles of NO and C2H2

Ma Yong-Peng, Zhao Xiao-Li, Liu Ya-Wei, Xu Long-Quan, Kang Xu, Yang Ke, Yan Shuai, Zhu Lin-Fan,
PDF
导出引用
  • 基于第三代同步辐射光源, 在20 keV的入射X射线能量下测量了NO与C2H2分子的康普顿轮廓. 考虑到本次实验结果在pz ≈ 0附近的统计精度达到了0.2%, 本文报道的NO和C2H2的康普顿轮廓可以作为严格检验理论的实验基准. 除此之外, 还分别采用HF方法及密度泛函方法选用不同的基组计算了NO 与C2H2康普顿轮廓. 通过对比实验结果与理论计算, 发现对于NO分子, 加入弥散函数基组理论计算结果与实验符合更好, 说明NO分子基态的电子分布较为弥散. 对于C2H2分子, HF方法理论计算的结果与实验符合较好.
    The Compton profiles of nitric oxide and acetylene molecules have been determined at an incident photon energy of 20 keV. Compton profile measurements are carried out with the beamline BL15U1 at the Shanghai Synchrotron Radiation Facility (SSRF). A dedicated gas cell is used, in which diffuse scattering is effectively suppressed. By considering that the statistical accuracy of 0.2% at pz ≈ 0 is achieved, the Compton profiles of NO and C2H2 determined in this paper can serve as the experimental benchmark data. Furthermore, the density functional theory (DFT) and HF calculation for different basis sets are used to calculate the Compton profiles of nitric oxide and acetylene. It is found that the DFT calculations with the diffuse basis sets are closer to the experimental results, indicating that the electronic density distribution of nitric oxide is more diffuse. For acetylene, the HF calculation is of better agreement with the experimental result. To better understand Compton profiles, we have compared them with distributions of electron density by theoretical calculation. There are clear correspondences between them: diffuse distribution is related to the localized profile and complex structure in electron density distribution, which also shows a subtle structure in profile. The present Compton profiles of nitric oxide and acetylene molecules achieved by synchrotron radiation are the most accurate up to now, as far as we know.
    • 基金项目: 国家自然科学基金(批准号: U1332204, 11274291, 11104309, 1320101003)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1332204, 11274291, 11104309, 11320101003).
    [1]

    Compton A H 1923 Phys. Rev. 21 483

    [2]

    Ge Y C 2009 Acta Phys. Soc. 58 5 ( in Chinese)[葛愉成 2009 物理学报 58 5]

    [3]

    Dumond J W M 1929 Phys. Rev. 33 643

    [4]

    Eisenberger P 1970 Phys. Rev. A 2 1678

    [5]

    Eisenberger P, Marra W C 1971 Phys. Rev. L. 27 1413

    [6]

    Eisenberger P 1972 Phys. Rev. A 5 628

    [7]

    Eisenberger P 1972 J. Chem. Phys. 56 1207

    [8]

    Meng X Z, Wang M H, Ren Z M 2010 Acta Phys. Soc. 593( in Chinese)[孟现柱, 王明红, 任忠民 2010 物理学报 59 3 ]

    [9]

    Xie B P, Zhu L F, Yang K, Zhou B, Hiraoka N, Cai Y Q, Yao Y, Wu C Q, Wang E L, Feng D L 2010 Phys. Rev. A 82 032501

    [10]

    Zhu L F, Wang L S, Xie B P, Yang K, Hiraoka N, Cai Y Q, Feng D L 2011 J. Phys. B: At., Mol. Opt. Phys. 44 025203

    [11]

    Kang X, Yang K, Liu Y W, Xu W Q, Hiraoka N, Tsuei K D, Zhang P F, Zhu L F 2012 Phys. Rev. A 86 022509

    [12]

    Liu Y W, Mei X X, Kang X, Yang K, Xu W Q, Peng Y G, Hiraoka N, Tsuei K D, Zhang P F, Zhu L F 2014 Phys. Rev. A 89 014502

    [13]

    Peng Y G, Kang X, Yang K, Zhao X L, Liu Y W, Mei X X, Xu W Q, Hiraoka N, Tsuei K D, Zhu L F 2014 Phys. Rev. A 89 032512

    [14]

    Sakurai H, Ota H, Tsuji N, Sakurai Y 2011 J. Phys. B 44 065001

    [15]

    Kobayashi K, Itou M, Hosoya T, Tsuji N, Sakurai Y, Sakurai H 2011 J. Phys. B 44 115102

    [16]

    Milo Gibaldi 1993 J. Clin. Pharmacol. 33 6

    [17]

    Lundberg K, Field W, David C, Seidl T 1993 J. Chem. Phys. 98 8384

    [18]

    Eisenberger P, Platzman P M 1970 Phys. Rev. A 2 415

    [19]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E 2003 GAUSSIAN 03 Revision B 04 (Gaussian Inc. 2003)

    [20]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [21]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

  • [1]

    Compton A H 1923 Phys. Rev. 21 483

    [2]

    Ge Y C 2009 Acta Phys. Soc. 58 5 ( in Chinese)[葛愉成 2009 物理学报 58 5]

    [3]

    Dumond J W M 1929 Phys. Rev. 33 643

    [4]

    Eisenberger P 1970 Phys. Rev. A 2 1678

    [5]

    Eisenberger P, Marra W C 1971 Phys. Rev. L. 27 1413

    [6]

    Eisenberger P 1972 Phys. Rev. A 5 628

    [7]

    Eisenberger P 1972 J. Chem. Phys. 56 1207

    [8]

    Meng X Z, Wang M H, Ren Z M 2010 Acta Phys. Soc. 593( in Chinese)[孟现柱, 王明红, 任忠民 2010 物理学报 59 3 ]

    [9]

    Xie B P, Zhu L F, Yang K, Zhou B, Hiraoka N, Cai Y Q, Yao Y, Wu C Q, Wang E L, Feng D L 2010 Phys. Rev. A 82 032501

    [10]

    Zhu L F, Wang L S, Xie B P, Yang K, Hiraoka N, Cai Y Q, Feng D L 2011 J. Phys. B: At., Mol. Opt. Phys. 44 025203

    [11]

    Kang X, Yang K, Liu Y W, Xu W Q, Hiraoka N, Tsuei K D, Zhang P F, Zhu L F 2012 Phys. Rev. A 86 022509

    [12]

    Liu Y W, Mei X X, Kang X, Yang K, Xu W Q, Peng Y G, Hiraoka N, Tsuei K D, Zhang P F, Zhu L F 2014 Phys. Rev. A 89 014502

    [13]

    Peng Y G, Kang X, Yang K, Zhao X L, Liu Y W, Mei X X, Xu W Q, Hiraoka N, Tsuei K D, Zhu L F 2014 Phys. Rev. A 89 032512

    [14]

    Sakurai H, Ota H, Tsuji N, Sakurai Y 2011 J. Phys. B 44 065001

    [15]

    Kobayashi K, Itou M, Hosoya T, Tsuji N, Sakurai Y, Sakurai H 2011 J. Phys. B 44 115102

    [16]

    Milo Gibaldi 1993 J. Clin. Pharmacol. 33 6

    [17]

    Lundberg K, Field W, David C, Seidl T 1993 J. Chem. Phys. 98 8384

    [18]

    Eisenberger P, Platzman P M 1970 Phys. Rev. A 2 415

    [19]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E 2003 GAUSSIAN 03 Revision B 04 (Gaussian Inc. 2003)

    [20]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [21]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

  • [1] 熊枫, 彭志敏, 丁艳军, 杜艳君. NO紫外宽带吸收光谱的非线性响应及实验研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220975
    [2] 董旭, 黄永盛, 唐光毅, 陈姗红, 司梅雨, 张建勇. 基于微波-电子康普顿背散射的环形正负电子对撞机束流能量测量方案. 物理学报, 2021, 70(13): 131301. doi: 10.7498/aps.70.20202081
    [3] 张乾毅, 韦华健, 李华兵. 基于晶格玻尔兹曼方法的多段淋巴管模型. 物理学报, 2021, 70(21): 210501. doi: 10.7498/aps.70.20210514
    [4] 张芝振, 李亮. X射线荧光CT成像中荧光产额、退激时间、散射、偏振等关键物理问题计算与分析. 物理学报, 2021, 70(19): 195201. doi: 10.7498/aps.70.20210765
    [5] 赫轶男, 张乾毅, 韦华建, 施娟. 基于晶格玻尔兹曼方法研究不同出口压力条件下淋巴管内氮含量的变化及影响. 物理学报, 2020, 69(10): 100501. doi: 10.7498/aps.69.20191944
    [6] 周红才, 黄树来, 李桂霞, 于桂凤, 王娟, 步红霞. 一氧化碳纳米管束低压相的第一性原理研究. 物理学报, 2019, 68(21): 217101. doi: 10.7498/aps.68.20190539
    [7] 宋张勇, 于得洋, 蔡晓红. 康普顿相机的成像分辨分析与模拟. 物理学报, 2019, 68(11): 118701. doi: 10.7498/aps.68.20182245
    [8] 贾清刚, 张天奎, 许海波. 基于前冲康普顿电子高能伽马能谱测量系统设计. 物理学报, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [9] 古宇飞, 闫镔, 李磊, 魏峰, 韩玉, 陈健. 基于全变分最小化和交替方向法的康普顿散射成像重建算法. 物理学报, 2014, 63(1): 018701. doi: 10.7498/aps.63.018701
    [10] 邓伦华, 李传亮, 朱圆月, 何文艳, 陈扬骎. NO分子b4Σ--a4Πi(4,0)带的吸收光谱. 物理学报, 2012, 61(19): 194208. doi: 10.7498/aps.61.194208
    [11] 孟现柱, 王明红, 任忠民. 基于椭圆超腔的高亮度激光同步辐射分析. 物理学报, 2010, 59(3): 1638-1642. doi: 10.7498/aps.59.1638
    [12] 葛愉成. 激光-电子康普顿散射物理特性研究. 物理学报, 2009, 58(5): 3094-3103. doi: 10.7498/aps.58.3094
    [13] 刘燕燕, E. Bauer-Grosse, 张庆瑜. 一氧化碳合成金刚石薄膜的形貌和结构分析. 物理学报, 2007, 56(11): 6572-6579. doi: 10.7498/aps.56.6572
    [14] 赵新新, 陶向明, 陈文彬, 陈 鑫, 尚学府, 谭明秋. Ni(111)表面一氧化碳和氢共吸附的密度泛函理论研究. 物理学报, 2006, 55(7): 3629-3635. doi: 10.7498/aps.55.3629
    [15] 汪 洋, 孟 亮. TiO2表面氧空位对NO分子吸附的作用. 物理学报, 2005, 54(5): 2207-2211. doi: 10.7498/aps.54.2207
    [16] 张建华, 吴悦, 庄友谊, 张寒洁, 汪健, 李海洋, 何丕模, 鲍世宁, 刘凤琴, 奎热西·易卜拉欣, 钱海杰. C2H2,C2H4与K在Ru(1010)表面上共吸附的UPS研究. 物理学报, 2001, 50(6): 1189-1192. doi: 10.7498/aps.50.1189
    [17] 钟志萍, 武淑兰, 徐 征, 朱林繁, 张晓军, 凤任飞, 徐克尊. 一氧化碳分立跃迁的光学振子强度和微分散射截面研究. 物理学报, 1998, 47(3): 419-427. doi: 10.7498/aps.47.419
    [18] 吴自玉, 汪克林. 严格的聚乙炔连续模型. 物理学报, 1986, 35(7): 931-938. doi: 10.7498/aps.35.931
    [19] 吕景发. 在相对论性电子上康普顿散射的极化自旋关联现象. 物理学报, 1965, 21(11): 1927-1932. doi: 10.7498/aps.21.1927
    [20] 徐永昌, 郑林生. 在γ-γ符合测量中康普顿散射所引起的符合. 物理学报, 1958, 14(2): 114-120. doi: 10.7498/aps.14.114
计量
  • 文章访问数:  2402
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-04
  • 修回日期:  2015-03-22
  • 刊出日期:  2015-08-05

NO与C2H2的康普顿轮廓研究

  • 1. 中国科学院上海应用物理研究所, 上海 201800;
  • 2. 合肥微尺度物质科学国家实验室, 中国科学技术大学近代物理系, 合肥 230026
    基金项目: 国家自然科学基金(批准号: U1332204, 11274291, 11104309, 1320101003)资助的课题.

摘要: 基于第三代同步辐射光源, 在20 keV的入射X射线能量下测量了NO与C2H2分子的康普顿轮廓. 考虑到本次实验结果在pz ≈ 0附近的统计精度达到了0.2%, 本文报道的NO和C2H2的康普顿轮廓可以作为严格检验理论的实验基准. 除此之外, 还分别采用HF方法及密度泛函方法选用不同的基组计算了NO 与C2H2康普顿轮廓. 通过对比实验结果与理论计算, 发现对于NO分子, 加入弥散函数基组理论计算结果与实验符合更好, 说明NO分子基态的电子分布较为弥散. 对于C2H2分子, HF方法理论计算的结果与实验符合较好.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回