搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

13CH4分子v3振动带空气和氮气加宽系数温度依赖性研究

马宏亮 孙明国 刘安雯 Aurore Vicet 陈卫东 曹振松 王贵师 刘强 高晓明 饶瑞中

引用本文:
Citation:

13CH4分子v3振动带空气和氮气加宽系数温度依赖性研究

马宏亮, 孙明国, 刘安雯, Aurore Vicet, 陈卫东, 曹振松, 王贵师, 刘强, 高晓明, 饶瑞中

Temperature dependence of air- and N2-broadening coefficients in the v3 band of 13CH4

Ma Hong-Liang, Su Ming-Guo, Liu An-Wen, Aurore Vicet, Chen Wei-Dong, Cao Zhen-Song, Wang Gui-Shi, Liu Qiang, Gao Xiao-Ming, Rao Rui-Zhong
PDF
导出引用
  • 采用中红外波段连续可调谐二极管激光器和自行研制的低温吸收池, 测量了温度为296 K, 252 K, 213 K, 173 K时, 3.38 μm附近13CH4分子的四条跃迁谱线的氮气和空气加宽光谱; 首次通过实验获得空气和氮气对13CH4分子的碰撞加宽系数, 以及谱线加宽系数的温度依赖系数. 实验过程中, 利用Voigt线型对所测量的光谱进行拟合. 实验结果表明, 氮气和空气对13CH4分子的碰撞诱导加宽系数随温度的降低而增大; 相同温度下, 氮气对13CH4分子的碰撞加宽系数普遍大于空气加宽系数. 实验数据为地球和外星体大气遥感探测提供了依据.
    By using a mid-infrared tunable diode laser and a home-made cooling cell, the N2- and air-broadening coefficients of 13CH4 have been measured at room and low temperatures around 3.38 μm. Four transitions are studied for the 13CH4 diluted with nitrogen and air at temperatures 296, 252, 213, and 173 K. Measurements at low temperatures allow the determination of the temperature dependent parameter of the collisional broadening coefficients. The line parameters are obtained by fitting the experimental profile to the Voigt line shape. The N2- and air-broadening coefficients increase with the drop of the temperature. The collisional broadening coefficients of N2 are always larger than those of air at the same temperature. These data support the remote sensing of the Earth and outer planet atmospheres. According to our knowledge, the line parameters are reported experimentally for the first time.
    • 基金项目: 国家自然科学基金青年基金(批号: 41205021)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41205021).
    [1]

    Menard-Bourcin F, Menard J, Boursier C 2007 J. Mol. Spectrosc. 242 55

    [2]

    Niederer H M, Albert S, Bauerecker S, Boudon V, Champion J P, Quack M 2008 Chimia 62 273

    [3]

    Delmas R, Peuch GM V-H 2005 Physique et chimie del’atmosphére (Paris : Echelles) p640

    [4]

    Shindell D T, Faluvegi G, Koch D M, Schmidt G A, Unger N, Bauer S E 2009 Science 326 716

    [5]

    SolomonS, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L 2007 Intergovernmental panel on Climate Change Working Group 1 Science, Climate Change 2007 : the Physical Science Basis (Cambridge: Cambridge University Press Cambridge United Kingdom) p996

    [6]

    Thompson A M 1992 Science 105 1157

    [7]

    Mondelain D, Payan S, Deng W, Camy-Peyret C, Hurtmans D, Mantz A W 2007 J. Mol. Spectrosc. 244 130

    [8]

    Varanasi P 1971 J. Quant. Spectros. Radiat. Transfer. 11 711

    [9]

    Pine A S 1992 J. Chem. Phys. 1992 97 773

    [10]

    Pine A S, T. Gabard 2003 J. Mol. Spectrosc. 217 105

    [11]

    Varanasi P 1975 J. Quant. Spectrosc. Radiat. Transfer 15 281

    [12]

    Martin B, Lepère M 2010 J. Mol. Spectrosc. 259 46

    [13]

    Antony B K, Niles D L, Wroblewski S B, Humphrey C M, Gabard T, Gamache R R 2008 J. Mol. Spectrosc. 251 268

    [14]

    Ma H L, Sun M G, Cao Z S, Huang Y B, Wang G S, Gao X M, Rao R Z 2014 Opt. Precision Eng 22 2617 ( in Chinese) [马宏亮, 孙明国, 曹振松, 黄印博, 王贵师, 高晓明, 饶瑞中 2014 光学精密工程 22 2617]

    [15]

    L. S. Rothman L S, Gordon I E, Babikov Y, Barbe A, Chris Benner D, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J-M, Gamache R R, Harrison J J, Hartmann J-M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Mller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev Vl G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transfer 130 4

    [16]

    Yin Z Q, Wu C, Gong W Y, Gong Z K, Wang Y J 2013 Acta Phys. Sin. 62 123301 (in Chinese) [尹增谦, 武臣, 宫琬钰, 龚之珂, 王永杰 2013 物理学报 62 123301]

    [17]

    Yang C C, Kan R F, Xu Z Y, Zhang G L, Liu J G 2014 Acta Phys. Sin. 63 223301 (in Chinese) [杨晨光, 阚瑞峰, 许振宇, 张光乐, 刘建国 2014 物理学报 63 223301]

    [18]

    Armstrong B H 1967 J. Quant. Spectrosc. Radiat. Transfer 7 61

    [19]

    Brown L R, Benner D C, Champion J-P, Devi V M, Fejard L, Gamache R R, Gabard T, Hilico J C, Lavorel B, Loëte M, Mellau G G, Nikitin A, Pine A S, Predoi-Cross A, Rinsland C P, Robert O, Sams R L, M. A H. Smith M A H, Tashkun S A, Tyuterev V G 2003 J. Quant. Spectrosc. Radiat. Transfer 82 219

  • [1]

    Menard-Bourcin F, Menard J, Boursier C 2007 J. Mol. Spectrosc. 242 55

    [2]

    Niederer H M, Albert S, Bauerecker S, Boudon V, Champion J P, Quack M 2008 Chimia 62 273

    [3]

    Delmas R, Peuch GM V-H 2005 Physique et chimie del’atmosphére (Paris : Echelles) p640

    [4]

    Shindell D T, Faluvegi G, Koch D M, Schmidt G A, Unger N, Bauer S E 2009 Science 326 716

    [5]

    SolomonS, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L 2007 Intergovernmental panel on Climate Change Working Group 1 Science, Climate Change 2007 : the Physical Science Basis (Cambridge: Cambridge University Press Cambridge United Kingdom) p996

    [6]

    Thompson A M 1992 Science 105 1157

    [7]

    Mondelain D, Payan S, Deng W, Camy-Peyret C, Hurtmans D, Mantz A W 2007 J. Mol. Spectrosc. 244 130

    [8]

    Varanasi P 1971 J. Quant. Spectros. Radiat. Transfer. 11 711

    [9]

    Pine A S 1992 J. Chem. Phys. 1992 97 773

    [10]

    Pine A S, T. Gabard 2003 J. Mol. Spectrosc. 217 105

    [11]

    Varanasi P 1975 J. Quant. Spectrosc. Radiat. Transfer 15 281

    [12]

    Martin B, Lepère M 2010 J. Mol. Spectrosc. 259 46

    [13]

    Antony B K, Niles D L, Wroblewski S B, Humphrey C M, Gabard T, Gamache R R 2008 J. Mol. Spectrosc. 251 268

    [14]

    Ma H L, Sun M G, Cao Z S, Huang Y B, Wang G S, Gao X M, Rao R Z 2014 Opt. Precision Eng 22 2617 ( in Chinese) [马宏亮, 孙明国, 曹振松, 黄印博, 王贵师, 高晓明, 饶瑞中 2014 光学精密工程 22 2617]

    [15]

    L. S. Rothman L S, Gordon I E, Babikov Y, Barbe A, Chris Benner D, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J-M, Gamache R R, Harrison J J, Hartmann J-M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Mller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev Vl G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transfer 130 4

    [16]

    Yin Z Q, Wu C, Gong W Y, Gong Z K, Wang Y J 2013 Acta Phys. Sin. 62 123301 (in Chinese) [尹增谦, 武臣, 宫琬钰, 龚之珂, 王永杰 2013 物理学报 62 123301]

    [17]

    Yang C C, Kan R F, Xu Z Y, Zhang G L, Liu J G 2014 Acta Phys. Sin. 63 223301 (in Chinese) [杨晨光, 阚瑞峰, 许振宇, 张光乐, 刘建国 2014 物理学报 63 223301]

    [18]

    Armstrong B H 1967 J. Quant. Spectrosc. Radiat. Transfer 7 61

    [19]

    Brown L R, Benner D C, Champion J-P, Devi V M, Fejard L, Gamache R R, Gabard T, Hilico J C, Lavorel B, Loëte M, Mellau G G, Nikitin A, Pine A S, Predoi-Cross A, Rinsland C P, Robert O, Sams R L, M. A H. Smith M A H, Tashkun S A, Tyuterev V G 2003 J. Quant. Spectrosc. Radiat. Transfer 82 219

  • [1] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221725
    [2] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究. 物理学报, 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [3] 邱梓恒, AhmedYousif Ghazal, 龙金友, 张嵩. 三乙胺分子构象与红外光谱的理论研究. 物理学报, 2022, 71(10): 103601. doi: 10.7498/aps.71.20220123
    [4] 施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林. 特丁基对苯二酚的光谱及密度泛函研究. 物理学报, 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [5] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [6] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究. 物理学报, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [7] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [8] 王安静, 方勇华, 李大成, 崔方晓, 吴军, 刘家祥, 李扬裕, 赵彦东. 面阵探测下的污染云团红外光谱仿真. 物理学报, 2017, 66(11): 114203. doi: 10.7498/aps.66.114203
    [9] 颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安. 氮氢共掺杂金刚石中氢的典型红外特征峰的表征. 物理学报, 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [10] 刘江平, 黎军, 刘元琼, 雷海乐, 韦建军. 低温下氘分子红外吸收特性研究. 物理学报, 2014, 63(2): 023301. doi: 10.7498/aps.63.023301
    [11] 孙友文, 谢品华, 徐晋, 周海金, 刘诚, 王杨, 刘文清, 司福祺, 曾议. 采用加权函数修正的差分光学吸收光谱反演环境大气中的CO2垂直柱浓度. 物理学报, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [12] 李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, 储修祥. 甘氨酸色氨酸寡肽链的红外光谱的密度泛函研究. 物理学报, 2013, 62(15): 156103. doi: 10.7498/aps.62.156103
    [13] 刘江平, 毕鹏, 雷海乐, 黎军, 韦建军. 近三相点温度低温固体氘的红外吸收谱. 物理学报, 2013, 62(16): 163301. doi: 10.7498/aps.62.163301
    [14] 孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋宝安, 沈祥, 徐铁峰. PbI2对远红外Te基硫系玻璃光学性能的影响. 物理学报, 2011, 60(11): 114212. doi: 10.7498/aps.60.114212
    [15] 刘晓东, 陶万军, 郑旭光, 萩原雅人, 孟冬冬, 张森林, 郭其新. 磁几何阻挫材料羟基氯化钴的中红外光谱特征. 物理学报, 2011, 60(3): 037803. doi: 10.7498/aps.60.037803
    [16] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [17] 毕鹏, 刘元琼, 唐永建, 杨向东, 雷海乐. 液氢平面低温冷冻靶的红外吸收谱. 物理学报, 2010, 59(11): 7531-7534. doi: 10.7498/aps.59.7531
    [18] 逯振平, 韩 奎, 李海鹏, 张文涛, 黄志敏, 沈晓鹏, 张兆慧, 白 磊. 4-N-甲基苯乙烯砒啶盐衍生物振动超极化率的理论研究. 物理学报, 2007, 56(10): 5843-5848. doi: 10.7498/aps.56.5843
    [19] 杨武保, 范松华, 张谷令, 马培宁, 张守忠, 杜 健. 非平衡磁控溅射法类金刚石薄膜的制备及分析. 物理学报, 2005, 54(10): 4944-4948. doi: 10.7498/aps.54.4944
    [20] 凌志华. 垂直排列液晶盒中反铁电液晶TFMHxPOCBC-D2偏振红外光谱研究. 物理学报, 2001, 50(2): 227-232. doi: 10.7498/aps.50.227
计量
  • 文章访问数:  2957
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-17
  • 修回日期:  2015-03-29
  • 刊出日期:  2015-08-05

13CH4分子v3振动带空气和氮气加宽系数温度依赖性研究

  • 1. 中国科学院安徽光学精密机械研究所, 中国科学院大气成分与光学重点实验室, 合肥 230031;
  • 2. 合肥微尺度物质科学国家实验室, 中国科学技术大学化学物理系, 合肥 230026;
  • 3. Université Montpellier 2, Campus St Priest; IES Institut d’Electronique et des Systémes, 860 rue de St Priest. 34095 Montpellier cedex 5, France;
  • 4. Laboratoire de Physicochimie de l’Atmosphe’re, Universite’ du Littoral Côte d’Opale, 189A, Av. Maurice Schumann, 59140 Dunkerque, France;
  • 5. 中国科学院大学, 北京 100049
    基金项目: 国家自然科学基金青年基金(批号: 41205021)资助的课题.

摘要: 采用中红外波段连续可调谐二极管激光器和自行研制的低温吸收池, 测量了温度为296 K, 252 K, 213 K, 173 K时, 3.38 μm附近13CH4分子的四条跃迁谱线的氮气和空气加宽光谱; 首次通过实验获得空气和氮气对13CH4分子的碰撞加宽系数, 以及谱线加宽系数的温度依赖系数. 实验过程中, 利用Voigt线型对所测量的光谱进行拟合. 实验结果表明, 氮气和空气对13CH4分子的碰撞诱导加宽系数随温度的降低而增大; 相同温度下, 氮气对13CH4分子的碰撞加宽系数普遍大于空气加宽系数. 实验数据为地球和外星体大气遥感探测提供了依据.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回