搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

事件顺序重建对康普顿相机成像分辨的影响

王春杰 关清帝 姜文刚 余青江 解峰 余功硕 梁建峰 李雪松 徐江

引用本文:
Citation:

事件顺序重建对康普顿相机成像分辨的影响

王春杰, 关清帝, 姜文刚, 余青江, 解峰, 余功硕, 梁建峰, 李雪松, 徐江

Influence of event sequence reconstruction on imaging resolution of Compton cameras

WANG Chunjie, GUAN Qingdi, JIANG Wengang, YU Qingjiang, XIE Feng, YU Gongshuo, LIANG Jianfeng, LI Xuesong, XU Jiang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 康普顿相机用于γ射线成像具有装置轻便、探测效率高和成像能区广的优点. 然而, 由于探测系统难以分辨康普顿散射事件和散射光子吸收事件, 造成图像重建错误. 使用GEANT4蒙特卡罗程序构建了基于三维位置灵敏碲锌镉探测器的康普顿相机模型, 模拟探测远场137Cs点源特征γ射线并逐个事件地记录探测器中发生相互作用的位置和沉积的能量. 使用反投影图像重建算法对有效康普顿散射事件的康普顿散射角进行重建并对放射源成像, 研究了事件顺序重建对成像分辨的影响. 结果表明, 错误排序事件对成像分辨的影响主要在偏离源点位置30°以内的区域, 源点位置附近产生的错误重建像点在26°附近形成环状分布. 使用基于沉积能量大小的康普顿边缘测试和简单比较法对事件进行排序, 正确排序事件的比例提升至82%, 源点位置的像点分布密度提升了47%, 成像分辨得到了提升.
    The Compton camera for γ-ray imaging has the advantages of light weight, high detection efficiency, and wide imaging energy range. However, it is difficult for the detection system to distinguish between the Compton scattering event and scattering photon absorption event, which results in erroneous image reconstruction. In this work, a simulation model of Compton camera based on a three-dimensional position-sensitive CdZnTe detector is constructed using GEANT4 program. The detection of characteristic γ-ray from a far-field 137Cs point-like source is simulated. The location of the interaction and energy deposition in the detector are recorded by means of event-by-event. The Compton scattering angles of effective Compton scattering events and imaging of the radioactive source are reconstructed using a simple back-projection algorithm which is an image reconstruction algorithm suitable for real-time imaging scenes. The influences of event sequence reconstruction on the imaging resolution and its improvement are investigated. The results show that the influence of incorrect sequence events on imaging resolution is mainly in the area within 30° deviation from the source position, resulting in a decrease in the density of the image points distributed at the source position. Incorrectly reconstructed image points are generated near the source position and form a ring at 26°. The percentage of correctly sequenced events increases to 82% by using Compton edge test and simple comparison method based on the deposited energy for sequencing events. The density of image points distributed at the source location is improved by 47%, and the incorrect reconstruction of the image point distribution near the source location is greatly suppressed, resulting in an improved imaging resolution. The research results provide support for designing Compton camera and optimizing image reconstruction.
  • 图 1  康普顿散射及γ射线入射方向重建示意图

    Fig. 1.  Schematic of Compton scattering and γ-ray incidence direction reconstruction.

    图 2  简单反投影图像重建算法示意图

    Fig. 2.  Schematic of the simple back-projection image reconstruction algorithm.

    图 3  3D-CZT晶体及测量原理示意图

    Fig. 3.  Schematic of 3D-CZT and measurement principle.

    图 4  正确排序事件的散射光子能量与康普顿散射角的分布

    Fig. 4.  Distribution of scattering photon energy and Compton scattering angles for correctly sequenced events.

    图 5  正确排序事件和混乱排序事件的散射光子能量分布

    Fig. 5.  Scattering photon energy distribution for correct and scrambled sequence events.

    图 6  正确排序事件和错误排序事件的反投影康普顿圆锥示意图

    Fig. 6.  Schematic of the back-projection Compton cone for correct and incorrect sequence events.

    图 7  错误排序事件的反投影康普顿散射角与正确重建所需康普顿散射角的差异分布

    Fig. 7.  Distribution of the difference between the back- projection Compton scattering angle of incorrect sequence events and the Compton scattering angle required for correct reconstruction.

    图 8  $\theta $和${\theta _{{\text{geo}}}}$差异分布 (a) 正确排序事件; (b)混乱排序事件; ${\theta _{{\text{ARM}}}}$分布 (c) 正确排序事件; (d) 混乱排序事件

    Fig. 8.  Distribution of the difference between $\theta $ and ${\theta _{{\text{geo}}}}$: (a) Correct sequence events; (b) scrambled sequence events. Distribution of ${\theta _{{\text{ARM}}}}$: (c) Correct sequence events; (d) scrambled sequence events.

    图 9  综合排序后的分布 (a) $\theta $和${\theta _{{\text{geo}}}}$差异; (b) ${\theta _{{\text{ARM}}}}$分布

    Fig. 9.  Distribution after sequence reconstruction: (a) Difference between $\theta $ and ${\theta _{{\text{geo}}}}$; (b) ${\theta _{{\text{ARM}}}}$.

    图 10  137Cs点源图像重建结果 (a) 事件正确排序; (b) 混乱排序; (c) 使用康普顿边缘测试和简单比较法排序

    Fig. 10.  137Cs point source image reconstruction: (a) Correct sequence; (b) scrambled sequence; (c) sequencing using Compton edge test and simple comparison.

  • [1]

    Todd R W, Nightingale J M, Everett D B 1974 Nature 251 132Google Scholar

    [2]

    Gal O, Gmar M, Ivanov O P, Lainé F, Lamadie F, Le Goaller C, Mahé C, Manach E, Stepanov V E 2006 Nucl. Instrum. Methods Phys. Res. A 563 233Google Scholar

    [3]

    孙世峰 2020 物理学报 69 198701Google Scholar

    Sun S F 2020 Acta Phys. Sin. 69 198701Google Scholar

    [4]

    杨靖, 谭放, 吴玉迟, 谷渝秋 2016 核电子学与探测技术 36 966

    Yang J, Tan F, Wu Y C, Gu Y Q 2016 Nucl. Electron. Detect. Technol. 36 966

    [5]

    Strong A 1996 Space Sci. Rev. 76 205

    [6]

    Kamae T, Hanada N, Enomoto R 1988 IEEE Trans. Nucl. Sci. 35 352Google Scholar

    [7]

    Mihailescu L, Vetter K, Burks M, Hull E, Craig W 2007 Nucl. Instrum. Methods Phys. Res. A 570 89Google Scholar

    [8]

    He Z, Li W, Knoll G, Wehe D, Berry J, Stahle C 1999 Nucl. Instrum. Methods Phys. Res. A 422 173Google Scholar

    [9]

    Du Y, He Z, Knoll G, Wehe D, Li W 2001 Nucl. Instrum. Methods Phys. Res. A 457 203Google Scholar

    [10]

    Lehner C E, He Z, Zhang F 2004 IEEE Trans. Nucl. Sci. 51 1618Google Scholar

    [11]

    Wahl C G, Kaye W, Wang W, Zhang F, Jaworski J, Boucher Y A, King A, He Z 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) pp1–4

    [12]

    宋张勇, 于得洋, 蔡晓红 2019 物理学报 68 118701Google Scholar

    Song Z Y, Yu D Y, Cai X H 2019 Acta Phys. Sin. 68 118701Google Scholar

    [13]

    王薇, 李传龙, 吴建华, 李兴隆 2019 原子能科学技术 53 2471

    Wang W, Li C L, Wu J H, Li X L 2019 Atomic Energy Sci. Tech. 53 2471

    [14]

    Song Z Y, Zhang B Z, Yu D Y 2021 Nucl. Phys. Rev. 38 215

    [15]

    Shy D, He Z 2020 Nucl. Instrum. Methods Phys. Res. A 954 161443Google Scholar

    [16]

    Xiaofeng G, Qingpei X, Dongfeng T, Yi W, Fanhua H, Yingzeng Z, Chengsheng C, Na L 2017 Appl. Radiat. Isot. 124 93Google Scholar

    [17]

    Liu Y L, Fu J Q, Li Y L, Li Y J, Ma X M, Zhang L 2018 Nucl. Sci. Tech. 29 1Google Scholar

    [18]

    张峰, 闫镔, 汪先超, 江桦, 魏星 2013 物理学报 62 168702Google Scholar

    Zhang F, Yan B, Wang X C, Jiang H, Wei X 2013 Acta Phys. Sin. 62 168702Google Scholar

    [19]

    Collaboration G, Agostinelli S 2003 Nucl. Instrum. Methods Phys. Res. A 506 0

    [20]

    Tian F, Geng C R, Yao Z Y, Wu R Y, Xu J F, Cai F, Tang X B 2022 Phys. Med. 96 140Google Scholar

    [21]

    Xu D, He Z, Lehner C E, Zhang F 2004 Hard X-Ray and Gamma-Ray Detector Physics VI Denver, Colorado, United States, October 21, 2004 pp144–155

  • [1] 白雨蓉, 李培, 何欢, 刘方, 李薇, 贺朝会. 近地轨道质子和α粒子入射InP产生的位移损伤模拟. 物理学报, doi: 10.7498/aps.73.20231499
    [2] 杨卫涛, 武艺琛, 许睿明, 时光, 宁提, 王斌, 刘欢, 郭仲杰, 喻松林, 吴龙胜. 碲镉汞红外焦平面阵列图像传感器空间质子位移损伤及电离总剂量效应Geant4仿真. 物理学报, doi: 10.7498/aps.73.20241246
    [3] 向鹏程, 蔡聪波, 王杰超, 蔡淑惠, 陈忠. 基于深度神经网络的时空编码磁共振成像超分辨率重建方法. 物理学报, doi: 10.7498/aps.71.20211754
    [4] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, doi: 10.7498/aps.71.20211722
    [5] 董旭, 黄永盛, 唐光毅, 陈姗红, 司梅雨, 张建勇. 基于微波-电子康普顿背散射的环形正负电子对撞机束流能量测量方案. 物理学报, doi: 10.7498/aps.70.20202081
    [6] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制. 物理学报, doi: 10.7498/aps.70.20210747
    [7] 白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会. 空间重离子入射磷化铟的位移损伤模拟. 物理学报, doi: 10.7498/aps.70.20210303
    [8] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, doi: 10.7498/aps.69.20200064
    [9] 宋张勇, 于得洋, 蔡晓红. 康普顿相机的成像分辨分析与模拟. 物理学报, doi: 10.7498/aps.68.20182245
    [10] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, doi: 10.7498/aps.67.20181095
    [11] 王心怡, 范全平, 魏来, 杨祖华, 张强强, 陈勇, 彭倩, 晏卓阳, 肖沙里, 曹磊峰. Fresnel波带片编码成像的高分辨重建. 物理学报, doi: 10.7498/aps.66.054203
    [12] 姚志明, 段宝军, 宋顾周, 严维鹏, 马继明, 韩长材, 宋岩. ST401塑料闪烁体的脉冲中子相对光产额评估方法. 物理学报, doi: 10.7498/aps.66.062401
    [13] 贾清刚, 张天奎, 许海波. 基于前冲康普顿电子高能伽马能谱测量系统设计. 物理学报, doi: 10.7498/aps.66.010703
    [14] 马永朋, 赵小利, 刘亚伟, 徐龙泉, 康旭, 倪冬冬, 闫帅, 朱林繁, 杨科. NO与C2H2的康普顿轮廓研究. 物理学报, doi: 10.7498/aps.64.153302
    [15] 何小亮, 刘诚, 王继成, 王跃科, 高淑梅, 朱健强. PIE成像中周期性重建误差的研究. 物理学报, doi: 10.7498/aps.63.034208
    [16] 古宇飞, 闫镔, 李磊, 魏峰, 韩玉, 陈健. 基于全变分最小化和交替方向法的康普顿散射成像重建算法. 物理学报, doi: 10.7498/aps.63.018701
    [17] 葛愉成. 激光-电子康普顿散射物理特性研究. 物理学报, doi: 10.7498/aps.58.3094
    [18] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算. 物理学报, doi: 10.7498/aps.58.684
    [19] 吕景发. 在相对论性电子上康普顿散射的极化自旋关联现象. 物理学报, doi: 10.7498/aps.21.1927
    [20] 徐永昌, 郑林生. 在γ-γ符合测量中康普顿散射所引起的符合. 物理学报, doi: 10.7498/aps.14.114
计量
  • 文章访问数:  250
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-13
  • 修回日期:  2025-03-06
  • 上网日期:  2025-04-01

/

返回文章
返回