搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超绝热技术快速制备里德堡超级原子W态

杨丽萍 王纪平 董莉 修晓明 计彦强

引用本文:
Citation:

基于超绝热技术快速制备里德堡超级原子W态

杨丽萍, 王纪平, 董莉, 修晓明, 计彦强

Rapid Preparation of Rydberg Superatom W State Using Superadiabatic Techniques

YANG Liping, WANG Jiping, DONG Li, XIU Xiaoming, JI Yanqiang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • W态作为一种具有鲁棒性的多体纠缠态, 在量子信息处理、量子网络构建以及量子计算等领域具有重要应用. 本文借助里德堡超级原子的有效能级进行编码, 运用超绝热迭代技术, 提出一种快速制备里德堡超级原子W态的方案. 该方案无需对实验参数和交互时间进行精确控制, 且其反绝热哈密顿量与有效哈密顿量形式相同. 数值模拟结果表明, 此方案不仅能够快速制备W态, 还具备较高的保真度和良好的实验可操作性. 进一步的数值模拟分析显示, 在面对原子自发辐射和光子泄漏引发的退相干问题时, 该方案展现出较强的鲁棒性. 此外, 该方案可扩展至 N 个里德堡超级原子的情况, 这展示了该技术在大规模多体纠缠态制备中的潜力.
    The W state, as a robust multipartite entangled state, plays an important role in quantum information processing, quantum network construction and quantum computing. In this paper, the three-level ladder-type Rydberg atomic system is put into the Rydberg blocking ball to form a superatom. Each superatom has many collective states including just one Rydberg excitation constrained by the Rydberg blockade effect. In the weak cavity field limit, at most one atom can be pumped into excited state, then we can describe the superatom by a three-level ladder-type system. Afterwards we encode quantum information on the effective energy levels of Rydberg superatoms and propose a fast scheme for preparing the Rydberg superatom W state based on the superadiabatic iterative technique and quantum Zeno dynamics, this scheme can be achieved in only one step by controlling the laser pulses. In the current scheme, the superatoms are trapped in spatially separated cavities connected by optical fibers, which significantly enhances the feasibility of experimental manipulation. A remarkable feature is that it does not require precise control of experimental parameters and interaction time. Meanwhile, the form of counterdiabatic Hamiltonian is the same as that of the effective Hamiltonian. Through numerical simulations, the fidelity of this scheme can reach 99.94%. Even considering decoherence effects, including atomic spontaneous emission and photon leakage, the fidelity can still exceed 97.5%, further demonstrating the strong robustness of the solution. In addition, the Rabi frequency can be characterized as a linear superposition of Gaussian functions, this representation significantly alleviates the complexity encountered in practical experiments. Futhermore, we also analyzed the impact of parameter fluctuations on the fidelity, the results show that this scheme is robust against parameter fluctuations. At last, the present scheme is extended to the cases of N Rydberg superatoms, which shows the scalability of our scheme.
  • 图 1  (a)单个里德堡原子能级结构图; (b)里德堡超级原子的等效能级结构图

    Fig. 1.  (a) Energy level structure diagram of a single Rydberg atom; (b) The equivalent energy level structure diagram of Rydberg superatom.

    图 2  里德堡超级原子与腔系统的示意图. SA是里德堡超级原子, $ \Omega_k $是第k个腔中经典场的拉比频率

    Fig. 2.  Schematic diagram of the structure of the Rydberg superatom-cavity system. SA denots the Rydberg superatom, and $ \Omega_k $ is the classical field Rabi frequency in the k-th cavity.

    图 3  $ \theta_1(t) $随时间的变化关系. 选取的参数为 $ t_0 = 0.14 T $ 和 $ t_c = 0.19 T $

    Fig. 3.  The $ \theta_1(t) $ as a function of the time. The parameters $ t_0 = 0.14 T $ and $ t_c = 0.19 T $.

    图 4  $ \theta_2(t) $ 随时间的变化关系. 选取的参数为$ t_0 = 0.14 T $ 和 $ t_c = 0.19 T $

    Fig. 4.  The $ \theta_2(t) $ as a function of the time. The parameters $ t_0 = 0.14 T $and $ t_c = 0.19 T $.

    图 5  $ \Omega_0(T^{-1}) $对保真度$ F(T) $的影响图. 当$ \Omega_0 = 8 T^{-1} $时, 保真度$ F(T) = 0.9994 $

    Fig. 5.  The influence of $ \Omega_0(T^{-1}) $ on fidelity $ F(T) $. When $ \Omega_0 = 8 T^{-1} $, the fidelity $ F(T) = 0.9994 $.

    图 6  (a)对比脉冲$ \Omega'_1(t) $和拟合的高斯脉冲$ \widetilde{\Omega}_1(t) $. (b)对比脉冲$ \Omega'_2(t) $和拟合的高斯脉冲$ \widetilde{\Omega}_2(t) $

    Fig. 6.  (a) Comparing the pulse $ \Omega '_1 (t) $ and the fitting of gaussian pulse $ \widetilde {\Omega} _1 (t) $. (b) Comparing the pulse $ \Omega '_2 (t) $ and the fitting of gaussian pulse $ \widetilde {\Omega} _2 (t) $.

    图 7  W态的保真度在超绝热迭代$ T = 8/\Omega_0 $、绝热演化$ T = 8/\Omega_0 $、绝热演化$ T = 35/\Omega_0 $三种不同情况下随时间的变化

    Fig. 7.  Under the three different conditions: superadiabatic iteration $ T = 8/\Omega_0 $, adiabatic evolution $ T = 8/\Omega_0 $ and adiabatic evolution $ T = 35/\Omega_0 $, the fidelity of W state as a function of the time.

    图 8  哈密顿量$ H_{tot} $的控制下的W态的保真度与$ \kappa/\lambda $和$ \gamma/\lambda $的关系. $ T = 8/\Omega_0, \Omega_0 = 0.1\lambda $

    Fig. 8.  The relationship between the fidelity of the W state and $ \kappa/\lambda $, $ \gamma/\lambda $ by the Hamiltonian $ H_{tot} $. $ T = 8 / \Omega_0, $$ \Omega_0 = 0.1\lambda $.

    图 9  (a)保真度随$ \delta \widetilde{\Omega}_1 $ 和 $ \delta \widetilde{\Omega}_2 $的变化. (b)保真度随$ \delta \lambda $和$ \delta v $的变化

    Fig. 9.  (a)The fidelity versus $ \delta \widetilde{\Omega}_1 $ and $ \delta \widetilde{\Omega}_2 $. (b)The fidelity versus $ \delta \lambda $ and $ \delta v $.

    图 10  N个里德堡超级原子-腔系统结构型的示意图. 每个里德堡超级原子被分别放置在不同的真空腔中, 第 2 到第 N 个腔均与第 1 个腔相连. $ \Omega_N $是第N个腔中经典场驱动的拉比频率

    Fig. 10.  A schematic diagram illustrating the structure of N-Rydberg superatom-cavity system. Each of the Rydberg superatom is placed in a separate vacuum cavity, with cavities 2 through N all connected to cavity 1. $ \Omega_N $ is the classical field-driven Rabi frequency in the N-th cavity.

  • [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [2]

    Markham D, Sanders B C 2008 Phys. Rev. A 78 042309Google Scholar

    [3]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [4]

    Luo Y H, Zhong H S, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N L, Lu C Y, et al 2019 Phys. Rev. Lett. 123 070505Google Scholar

    [5]

    Xia Y, Song J, Lu P M, Song H S 2010 JOSA B 27 A1Google Scholar

    [6]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [7]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557Google Scholar

    [8]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [9]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [10]

    Briegel H J, Browne D E, Dür W, Raussendorf R, Van den Nest M 2009 Nat. Phys. 5 19Google Scholar

    [11]

    Zhao P Z, Cui X D, Xu G, Sjöqvist E, Tong D 2017 Phys. Rev. A 96 052316Google Scholar

    [12]

    Su S L, Gao Y, Liang E, Zhang S 2017 Phys. Rev. A 95 022319Google Scholar

    [13]

    Wu J L, Su S L, Wang Y, Song J, Xia Y, Jiang Y Y 2020 Opt. Lett. 45 1200Google Scholar

    [14]

    Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74 054302Google Scholar

    [15]

    Zhu A D, Xia Y, Fan Q B, Zhang S 2006 Phys. Rev. A 73 022338Google Scholar

    [16]

    Li T, Long G L 2020 New J. Phys. 22 063017Google Scholar

    [17]

    Greenberger D M, Horne M A, Zeilinger A 1989 In Bells theorem, quantum theory and conceptions of the universe (Springer), pp 69–72

    [18]

    Shao X Q, Liu F, Xue X W, Mu W, Li W b 2023 Phys. Rev. Appl 20 014014Google Scholar

    [19]

    Dür W, Vidal G, Cirac J I 2000 Phys. Rev. A 62 062314Google Scholar

    [20]

    Cabello A 2002 Phys. Rev. A 65 032108Google Scholar

    [21]

    Agrawal P, Pati A 2006 Phys. Rev. A 74 062320Google Scholar

    [22]

    Wang A, Wei Y Z, Li Z Y, Jiang M 2023 IET Quantum Commun. 4 200Google Scholar

    [23]

    Renner R 2008 Int. J. Quantum Inf. 6 1Google Scholar

    [24]

    Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94 230504Google Scholar

    [25]

    Lipinska V, Murta G, Wehner S 2018 Phys. Rev. A 98 052320Google Scholar

    [26]

    Miguel-Ramiro J, Riera-Sàbat F, Dür W 2023 PRX Quantum 4 040323Google Scholar

    [27]

    Su S L, Shao X Q, Wang H F, Zhang S 2014 Phys. Rev. A 90 054302Google Scholar

    [28]

    Han J X, Wu J L, Wang Y, Xia Y, Jiang Y Y, Song J 2021 Phys. Rev. A 103 032402Google Scholar

    [29]

    Shao X Q, Wang Z, Liu H, Yi X 2016 Phys. Rev. A 94 032307Google Scholar

    [30]

    Shao X Q, Su S L, Li L, Nath R, Wu J H, Li W 2024 Appl. Phys. Rev. 11

    [31]

    Shao Q P, Wang J, Ji Y, Liu Y, Dong L, Xiu X M 2023 J. Opt. Soc. Am. B 41 143

    [32]

    Zhang W Y, Wang C Q, Ji Y Q, Shao Q P, Wang J P, Wang J, Yang L P, Dong L, Xiu X M 2024 Adv. Quantum Technol. 7 2300140Google Scholar

    [33]

    Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 82 2313Google Scholar

    [34]

    Beguin L, Vernier A, Chicireanu R, Lahaye T, Browaeys A 2013 Phys. Rev. Lett. 110 263201Google Scholar

    [35]

    Xing T, Zhao P, Tong D 2021 Phys. Rev. A 104 012618Google Scholar

    [36]

    Lukin M D, Fleischhauer M, Cote R, Duan L, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901Google Scholar

    [37]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D, Walker T, Saffman M 2009 Nat. Phys. 5 110Google Scholar

    [38]

    Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5 115Google Scholar

    [39]

    Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104 010502Google Scholar

    [40]

    Dudin Y O, Li L, Bariani F, Kuzmich A 2012 Nat. Phys. 8 790Google Scholar

    [41]

    Shao X Q, Wu J, Yi X 2017 Phys. Rev. A 95 062339Google Scholar

    [42]

    Su S L, Li W 2021 Phys. Rev. A 104 033716Google Scholar

    [43]

    Wu J L, Wang Y, Han J X, Su S L, Xia Y, Jiang Y, Song J 2021 Phys. Rev. A 103 012601Google Scholar

    [44]

    Zeiher J, Schauß P, Hild S, Macrì T, Bloch I, Gross C 2015 Phys. Rev. X 5 031015

    [45]

    Yang L, Wang J, Ji Y, Wang J, Zhang Z, Liu Y, Dong L, Xiu X 2024 Eur. Phys. J. Plus 139 1Google Scholar

    [46]

    Xu W, Venkatramani A V, Cantú S H, Šumarac T, Klüsener V, Lukin M D, Vuletić V 2021 Phys. Rev. Lett. 127 050501Google Scholar

    [47]

    Zhao P Z, Wu X, Xing T, Xu G, Tong D 2018 Phys. Rev. A 98 032313Google Scholar

    [48]

    Paris-Mandoki A, Braun C, Kumlin J, Tresp C, Mirgorodskiy I, Christaller F, Büchler H P, Hofferberth S 2017 Phys. Rev. X 7 041010

    [49]

    Liu Y L, Ji Y Q, Han X, Cui W X, Zhang S, Wang H F 2023 Adv. Quantum Technol. 6 2200173Google Scholar

    [50]

    Baksic A, Ribeiro H, Clerk A A 2016 Phys. Rev. Lett. 116 230503Google Scholar

    [51]

    Wu J L, Ji X, Zhang S 2017 Sci. Rep. 7 46255Google Scholar

    [52]

    Chen Y H, Qin W, Wang X, Miranowicz A, Nori F 2021 Phys. Rev. Lett. 126 023602Google Scholar

    [53]

    Giannelli L, Arimondo E 2014 Phys. Rev. A 89 033419Google Scholar

    [54]

    Wang X M, Zhang A Q, Zhao S M 2022 ACTA PHYSICA SINICA 71

    [55]

    Berry M V 2009 J. Phys. A: Math. Theor. 42 365303Google Scholar

    [56]

    Ibáñez S, Chen X, Muga J 2013 Phys. Rev. A 87 043402Google Scholar

    [57]

    Song X K, Ai Q, Qiu J, Deng F G 2016 Phys. Rev. A 93 052324Google Scholar

    [58]

    Huang B H, Chen Y H, Wu Q C, Song J, Xia Y 2016 Laser Phys. Lett. 13 105202Google Scholar

    [59]

    Wu J L, Su S L, Ji X, Zhang S 2017 Ann. Phys. 386 34Google Scholar

    [60]

    Löw R, Weimer H, Nipper J, Balewski J B, Butscher B, Büchler H P, Pfau T 2012 J. Phys. B: At., Mol. Opt. Phys. 45 113001Google Scholar

    [61]

    Su S L, Sun L N, Liu B J, Yan L L, Yung M H, Li W, Feng M 2023 Phys. Rev. Appl. 19 044007Google Scholar

    [62]

    Du F F, Fan Z G, Ren X M, Ma M, Liu W Y 2024 Chin. Phys. B

    [63]

    Shao X Q 2020 Phys. Rev. A 102 053118Google Scholar

    [64]

    Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401Google Scholar

    [65]

    Wu J L, Song C, Xu J, Yu L, Ji X, Zhang S 2016 Quantum Inf. Process. 15 3663Google Scholar

    [66]

    Shore B W 2017 Adv. Opt. Photonics 9 563Google Scholar

    [67]

    Zhang X, Isenhower L, Gill A, Walker T, Saffman M 2010 Phys. Rev. A 82 030306Google Scholar

    [68]

    Isenhower L, Urban E, Zhang X, Gill A, Henage T, Johnson T A, Walker T, Saffman M 2010 Phys. Rev. Lett. 104 010503Google Scholar

    [69]

    Guerlin C, Brion E, Esslinger T, Mølmer K 2010 Phys. Rev. A 82 053832Google Scholar

    [70]

    Zhang X F, Sun Q, Wen Y C, Liu W M, Eggert S, Ji A C 2013 Phys. Rev. Lett. 110 090402Google Scholar

  • [1] 沈星晨, 刘洋, 陈淇, 吕航, 徐海峰. 超快强激光场中原子分子的里德伯态激发. 物理学报, doi: 10.7498/aps.71.20221258
    [2] 王雪梅, 张安琪, 赵生妹. 电路量子电动力学中基于超绝热捷径的控制相位门实现. 物理学报, doi: 10.7498/aps.71.20220248
    [3] 白文杰, 严冬, 韩海燕, 华硕, 谷开慧. 三体里德堡超级原子的关联动力学研究. 物理学报, doi: 10.7498/aps.71.20211284
    [4] 计彦强, 王洁, 刘颖莉, 张大伟, 肖瑞杰, 董莉, 修晓明. 基于里德伯超级原子快速制备三粒子单重态. 物理学报, doi: 10.7498/aps.70.20201841
    [5] 于宛让, 计新. 基于超绝热捷径技术快速制备超导三量子比特Greenberger-Horne-Zeilinger态. 物理学报, doi: 10.7498/aps.68.20181922
    [6] 赵军龙, 张译丹, 杨名. 噪声对一种三粒子量子探针态的影响. 物理学报, doi: 10.7498/aps.67.20180040
    [7] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量. 物理学报, doi: 10.7498/aps.66.193701
    [8] 罗金龙, 凌丰姿, 李帅, 王艳梅, 张冰. 丁酮3s里德堡态的超快光解动力学研究. 物理学报, doi: 10.7498/aps.66.023301
    [9] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰. 不同原子在飞秒强激光场中的里德堡态激发和双电离. 物理学报, doi: 10.7498/aps.65.223201
    [10] 李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂. 49S里德堡态的射频双光子光谱. 物理学报, doi: 10.7498/aps.64.163201
    [11] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量. 物理学报, doi: 10.7498/aps.64.160702
    [12] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统. 物理学报, doi: 10.7498/aps.64.140301
    [13] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算. 物理学报, doi: 10.7498/aps.61.163202
    [14] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨. 物理学报, doi: 10.7498/aps.56.1881
    [15] 孙 江, 左战春, 郭庆林, 王英龙, 怀素芳, 王 颖, 傅盘铭. 应用双光子共振非简并四波混频测量Ba原子里德伯态. 物理学报, doi: 10.7498/aps.55.221
    [16] 黄永畅, 刘 敏. 一般WGHZ态和它的退纠缠与概率隐形传态. 物理学报, doi: 10.7498/aps.54.4517
    [17] 戴长建, 舒晓武, 郦菁, 张森, 方达渭. Yb原子里德伯态及价态的场电离阈. 物理学报, doi: 10.7498/aps.44.678
    [18] 张森, 邱济真, 王刚. 静电场中Ca原子里德堡态的能级结构. 物理学报, doi: 10.7498/aps.38.481
    [19] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率. 物理学报, doi: 10.7498/aps.38.1717
    [20] 张森, 邱济真, 胡素芬, 陆杰, 钟建伟, 梁宜, 孙家祯. Sr原子里德堡态的电场效应. 物理学报, doi: 10.7498/aps.37.983
计量
  • 文章访问数:  323
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-20

/

返回文章
返回