-
量子纠缠是量子信息处理和量子计算的基本资源, 简单而高效地制备纠缠态始终是学者们研究的热点问题之一. 作为量子信息编码理想载体之一的中性里德伯原子, 以其独特的优势在纠缠态制备领域占有一席之地. 本文将四能级倒“Y”型结构的里德伯原子系综放置于里德伯阻塞球内部使之形成超级原子, 在弱腔场近似下将量子信息编码在超级原子的有效能级上, 结合量子Zeno 动力学和绝热捷径的方法, 简单有效地制备了三粒子单重态. 此外, 本方案考虑了退相干因素(包括腔的衰减和超级原子的自发辐射)对单重态保真度的影响. 数值模拟结果表明, 本方案不需要对系统演化时间进行精确的控制就可以得到很高的保真度, 并且单重态的保真度对退相干因素是比较鲁棒的.Quantum entanglement is a basic resource of quantum information processing and quantum computation. The simple and efficient generation of entangled states is always one of the hot research topics. As one of the ideal carriers of quantum information encoding, neutral Rydberg atom occupies a place in the field of generation of entangled state with its unique advantages. For example, Rydberg atom has a large volume and is easily ionized by an external electric field, so it is very sensitive to the change in the external electric field. Therefore, the interaction strength between Rydberg atoms can be changed by altering the external electric field. Rydberg state is a highly excited state, but its radiation attenuation is very small: the radiation lifetime can reach a millisecond level or even longer. The distance between the atomic kernel and the outermost electron is relatively long, and the electric dipole moment is very large. In this paper, the four-level inverted “Y”-type Rydberg atomic system is introduced into the Rydberg blocking ball to form a superatom, and the quantum information is encoded on the effective energy level of the superatom under the condition of weak cavity field. We construct shortcuts to adiabatic passage in a three-superatom system. Combined with quantum Zeno dynamics and shortcuts to adiabatic passage, the three-particle singlet state is simply and effectively generated. In addition, the influence of decoherence factors (including cavity decay and spontaneous emission of superatoms) on the fidelity is considered in this scheme. Numerical simulation results show that the proposed scheme can obtain high fidelity without precisely controlling the evolution time, and the fidelity of singlet state is robust to decoherence factors, since no cavity-photon population is involved in the whole process because of the quantum Zeno dynamics.
-
Keywords:
- superatom /
- singlet state /
- shortcuts to adiabatic passage
[1] Cabello A 2002 Phys. Rev. Lett. 89 100402Google Scholar
[2] Mermin N D 1980 Phys. Rev. D 22 356Google Scholar
[3] Cabello A 2003 J. Mod. Opt. 50 1049Google Scholar
[4] Hsu L Y 2003 Phys. Rev. A 68 022306Google Scholar
[5] Hillery M, Bužek V 2001 Phys. Rev. A 64 042303Google Scholar
[6] Jin G S, Li S S, Feng S L, Zheng H Z 2005 Phys. Rev. A 71 034307Google Scholar
[7] Lin G W, Ye M Y, Chen L B, Du Q H, Lin X M 2007 Phys. Rev. A 76 014308Google Scholar
[8] Shao X Q, Wang H Fu, Chen L, Zhang S, Zhao Y F, Yeon K H 2010 New J. Phys. 12 023040Google Scholar
[9] Lu M, Xia Y, Song J, Song H S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 015502Google Scholar
[10] Shi Z C, Xia Y, Song J, Song H S 2013 Quantum Inf. Process. 12 411Google Scholar
[11] Jaksch D, Cirac J I, Zoller P, Rolston S L, Côté R, Lukin M D 2000 Phys. Rev. Lett. 85 2208Google Scholar
[12] Vogt T, Viteau M, Zhao J, Chotia A, Comparat D, Pillet P 2006 Phys. Rev. Lett. 97 083003Google Scholar
[13] Honer J, Löw R, Weimer H, Pfau T, Büchler H P 2011 Phys. Rev. Lett. 107 093601Google Scholar
[14] Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5 115Google Scholar
[15] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nat. Phys. 5 110Google Scholar
[16] Su S L, Liang E J, Zhang S, Wen J J, Sun l l, Jin Z, Zhu A D 2016 Phys. Rev. A 93 012306Google Scholar
[17] Su S L, Tian Y Z, Shen H Z, Zang H P, Liang E J, Zhang S 2017 Phys. Rev. A 96 042335Google Scholar
[18] Su S L, Gao Y, Liang E J, Zhang S 2017 Phys. Rev. A 95 022319Google Scholar
[19] Wu J L, Song J, Su S L 2020 Phys. Lett. A 384 126039Google Scholar
[20] Wu J L, Su S L, Wang Y, Song J, Xia Y, Jiang Y Y 2020 Opt. Lett. 45 1200Google Scholar
[21] Wu J L, Wang Y, Han J X, Su S L, Xia Y, Jiang Y Y, Song J 2021 Phys. Rev. A 103 012601Google Scholar
[22] Shao X Q, Li D X, Ji Y Q, Wu J H, Yi X X 2017 Phys. Rev. A 96 012328Google Scholar
[23] Møller D, Madsen L B, Møller K 2008 Phys. Rev. Lett. 100 170504Google Scholar
[24] Saffman M, Mølmer K 2009 Phys. Rev. Lett. 102 240502Google Scholar
[25] Wu H Z, Li Y, Yang Z B, Zheng S B 2017 Phys. Rev. A 95 013842Google Scholar
[26] Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104 010502Google Scholar
[27] Barredo D, Lienhard V, Scholl P, de Léséleuc S, Boulier T, Browaeys A, Lahaye T 2020 Phys. Rev. Lett. 124 023201Google Scholar
[28] Li D X, Shao X Q 2018 Phys. Rev. A 98 062338Google Scholar
[29] Wintermantel T M, Wang Y, Lochead G, Shevate S, Brennen G K, Whitlock S 2020 Phys. Rev. Lett. 124 070503Google Scholar
[30] Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar
[31] Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603Google Scholar
[32] Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901Google Scholar
[33] Scully M O, Fry E S, Ooi C H R, Wódkiewicz K 2006 Phys. Rev. Lett. 96 010501Google Scholar
[34] Yan D, Liu Y M, Bao Q Q, Fu C B, Wu J H 2012 Phys. Rev. A 86 023828Google Scholar
[35] Yan D, Cui C L, Liu Y M, Song L J, Wu J H 2013 Phys. Rev. A 87 023827Google Scholar
[36] Liu Y M, Yan D, Tian X D, Cui C L, Wu J H 2014 Phys. Rev. A 89 033839Google Scholar
[37] Zeiher J, Schauß P, Hild S, Macrì T, Bloch I, Gross C 2015 Phys. Rev. X 5 031015Google Scholar
[38] Beterov I I, Saffman M, Yakshina E A, Tretyakov D B, Entin V M, Hamzina G N, Ryabtsev I I 2016 J. Phys. B: At. Mol. Opt. Phys. 49 114007Google Scholar
[39] Paris-Mandoki A, Braun C, Kumlin J, Tresp C, Mirgorodskiy I, Christaller F, Büchler H P, Hofferberth S 2017 Phys. Rev. X 7 041010Google Scholar
[40] Misra B, Sudarshan E C G 1977 J. Math. Phys. 18 765
[41] Itano W M, Heinzen D J, Bollinger J J, Wineland D J 1990 Phys. Rev. A 41 2295Google Scholar
[42] Facchi P, Gorini V, Marmo G, Pascazio S, Sudarshan E C G 2000 Phys. Lett. A 275 12Google Scholar
[43] Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401Google Scholar
[44] Facchi P, Pascazio S 2008 J. Phys. A: Math. Theor. 41 493001Google Scholar
[45] Berry M V 2009 J. Phys. A: Math. Theor. 42 365303Google Scholar
[46] Lu M, Xia Y, Shen L T, Song J, An N B 2014 Phys. Rev. A 89 012326Google Scholar
[47] Chen X, Ruschhaupt A, Schmidt S, del Campo A, Guéry-Odelin D, Muga J G 2010 Phys. Rev. Lett. 104 063002Google Scholar
[48] Chen X, Muga J G 2010 Phys. Rev. A 82 053403Google Scholar
[49] Ji Y Q, Liu Y L, Zhou S J, Xiu X M, Dong L, Dong H K, Gao Y J, Yi X X 2019 Phys. Rev. A 99 023808Google Scholar
[50] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503Google Scholar
[51] Zhang X L, Isenhower L, Gill A T, Walker T G, Saffman M 2010 Phys. Rev. A 82 030306Google Scholar
[52] Guerlin C, Brion E, Esslinger T, Mølmer K 2010 Phys. Rev. A 82 053832Google Scholar
[53] Zhang X F, Sun Q, Wen Y C, Liu W M, Eggert S, Ji A C 2013 Phys. Rev. Lett. 110 090402Google Scholar
-
图 5 (a) 三粒子单重态的保真度随相互作用时间
$g_{0}t_{\rm c}$ 和原子自发辐射$\gamma/g_{0}$ 的变化; (b) 三粒子单重态的保真度随腔衰减$\kappa/g_{0}$ 和原子自发辐射$\gamma/g_{0}$ 的变化Fig. 5. (a) Fidelity of the singlet state versus the interaction time
$g_{0}t_{\rm c}$ and the atomic spontaneous emission$\gamma/g_{0}$ ; (b) fidelity of the singlet state versus the cavity decay$\kappa/g_{0}$ and the atomic spontaneous emission$\gamma/g_{0}$ -
[1] Cabello A 2002 Phys. Rev. Lett. 89 100402Google Scholar
[2] Mermin N D 1980 Phys. Rev. D 22 356Google Scholar
[3] Cabello A 2003 J. Mod. Opt. 50 1049Google Scholar
[4] Hsu L Y 2003 Phys. Rev. A 68 022306Google Scholar
[5] Hillery M, Bužek V 2001 Phys. Rev. A 64 042303Google Scholar
[6] Jin G S, Li S S, Feng S L, Zheng H Z 2005 Phys. Rev. A 71 034307Google Scholar
[7] Lin G W, Ye M Y, Chen L B, Du Q H, Lin X M 2007 Phys. Rev. A 76 014308Google Scholar
[8] Shao X Q, Wang H Fu, Chen L, Zhang S, Zhao Y F, Yeon K H 2010 New J. Phys. 12 023040Google Scholar
[9] Lu M, Xia Y, Song J, Song H S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 015502Google Scholar
[10] Shi Z C, Xia Y, Song J, Song H S 2013 Quantum Inf. Process. 12 411Google Scholar
[11] Jaksch D, Cirac J I, Zoller P, Rolston S L, Côté R, Lukin M D 2000 Phys. Rev. Lett. 85 2208Google Scholar
[12] Vogt T, Viteau M, Zhao J, Chotia A, Comparat D, Pillet P 2006 Phys. Rev. Lett. 97 083003Google Scholar
[13] Honer J, Löw R, Weimer H, Pfau T, Büchler H P 2011 Phys. Rev. Lett. 107 093601Google Scholar
[14] Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5 115Google Scholar
[15] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nat. Phys. 5 110Google Scholar
[16] Su S L, Liang E J, Zhang S, Wen J J, Sun l l, Jin Z, Zhu A D 2016 Phys. Rev. A 93 012306Google Scholar
[17] Su S L, Tian Y Z, Shen H Z, Zang H P, Liang E J, Zhang S 2017 Phys. Rev. A 96 042335Google Scholar
[18] Su S L, Gao Y, Liang E J, Zhang S 2017 Phys. Rev. A 95 022319Google Scholar
[19] Wu J L, Song J, Su S L 2020 Phys. Lett. A 384 126039Google Scholar
[20] Wu J L, Su S L, Wang Y, Song J, Xia Y, Jiang Y Y 2020 Opt. Lett. 45 1200Google Scholar
[21] Wu J L, Wang Y, Han J X, Su S L, Xia Y, Jiang Y Y, Song J 2021 Phys. Rev. A 103 012601Google Scholar
[22] Shao X Q, Li D X, Ji Y Q, Wu J H, Yi X X 2017 Phys. Rev. A 96 012328Google Scholar
[23] Møller D, Madsen L B, Møller K 2008 Phys. Rev. Lett. 100 170504Google Scholar
[24] Saffman M, Mølmer K 2009 Phys. Rev. Lett. 102 240502Google Scholar
[25] Wu H Z, Li Y, Yang Z B, Zheng S B 2017 Phys. Rev. A 95 013842Google Scholar
[26] Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104 010502Google Scholar
[27] Barredo D, Lienhard V, Scholl P, de Léséleuc S, Boulier T, Browaeys A, Lahaye T 2020 Phys. Rev. Lett. 124 023201Google Scholar
[28] Li D X, Shao X Q 2018 Phys. Rev. A 98 062338Google Scholar
[29] Wintermantel T M, Wang Y, Lochead G, Shevate S, Brennen G K, Whitlock S 2020 Phys. Rev. Lett. 124 070503Google Scholar
[30] Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar
[31] Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603Google Scholar
[32] Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901Google Scholar
[33] Scully M O, Fry E S, Ooi C H R, Wódkiewicz K 2006 Phys. Rev. Lett. 96 010501Google Scholar
[34] Yan D, Liu Y M, Bao Q Q, Fu C B, Wu J H 2012 Phys. Rev. A 86 023828Google Scholar
[35] Yan D, Cui C L, Liu Y M, Song L J, Wu J H 2013 Phys. Rev. A 87 023827Google Scholar
[36] Liu Y M, Yan D, Tian X D, Cui C L, Wu J H 2014 Phys. Rev. A 89 033839Google Scholar
[37] Zeiher J, Schauß P, Hild S, Macrì T, Bloch I, Gross C 2015 Phys. Rev. X 5 031015Google Scholar
[38] Beterov I I, Saffman M, Yakshina E A, Tretyakov D B, Entin V M, Hamzina G N, Ryabtsev I I 2016 J. Phys. B: At. Mol. Opt. Phys. 49 114007Google Scholar
[39] Paris-Mandoki A, Braun C, Kumlin J, Tresp C, Mirgorodskiy I, Christaller F, Büchler H P, Hofferberth S 2017 Phys. Rev. X 7 041010Google Scholar
[40] Misra B, Sudarshan E C G 1977 J. Math. Phys. 18 765
[41] Itano W M, Heinzen D J, Bollinger J J, Wineland D J 1990 Phys. Rev. A 41 2295Google Scholar
[42] Facchi P, Gorini V, Marmo G, Pascazio S, Sudarshan E C G 2000 Phys. Lett. A 275 12Google Scholar
[43] Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401Google Scholar
[44] Facchi P, Pascazio S 2008 J. Phys. A: Math. Theor. 41 493001Google Scholar
[45] Berry M V 2009 J. Phys. A: Math. Theor. 42 365303Google Scholar
[46] Lu M, Xia Y, Shen L T, Song J, An N B 2014 Phys. Rev. A 89 012326Google Scholar
[47] Chen X, Ruschhaupt A, Schmidt S, del Campo A, Guéry-Odelin D, Muga J G 2010 Phys. Rev. Lett. 104 063002Google Scholar
[48] Chen X, Muga J G 2010 Phys. Rev. A 82 053403Google Scholar
[49] Ji Y Q, Liu Y L, Zhou S J, Xiu X M, Dong L, Dong H K, Gao Y J, Yi X X 2019 Phys. Rev. A 99 023808Google Scholar
[50] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503Google Scholar
[51] Zhang X L, Isenhower L, Gill A T, Walker T G, Saffman M 2010 Phys. Rev. A 82 030306Google Scholar
[52] Guerlin C, Brion E, Esslinger T, Mølmer K 2010 Phys. Rev. A 82 053832Google Scholar
[53] Zhang X F, Sun Q, Wen Y C, Liu W M, Eggert S, Ji A C 2013 Phys. Rev. Lett. 110 090402Google Scholar
计量
- 文章访问数: 4886
- PDF下载量: 81
- 被引次数: 0