搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于绝热捷径快速实现远距离的四维纠缠态的制备

张春玲 刘文武

引用本文:
Citation:

基于绝热捷径快速实现远距离的四维纠缠态的制备

张春玲, 刘文武

Fast implementation of four-dimensional entangled state in separately coupled cavities via shortcut to adiabatic passage

Zhang Chun-Ling, Liu Wen-Wu
PDF
导出引用
  • 作为量子信息处理的载体,量子纠缠态一直以来都是量子信息领域的研究热点.相比于低维纠缠态,高维纠缠态使得量子通信具有更快的传输速度、更强的安全性、更高的噪声容忍阈值等特点.另外,绝热技术因其对实验参数起伏不敏感而被广泛应用于纠缠态的制备,然而绝热过程需要相当长的演化时间,因此绝热捷径应运而生.本文提出了一种采用无跃迁量子驱动构建绝热捷径实现快速制备两个原子的四维纠缠态的理论方案,该系统中的两个原子分别被囚禁在两个由光纤连接的双模腔中.为了获得一个技术上可操作的物理系统,本方案采用能级失谐设计出一个可精确驱动系统沿着某一个系统的瞬时本征态演化的哈密顿.该方案所采用的无跃迁量子驱动构建绝热捷径不仅大大缩短了演化时间,而且在实验上也比较容易实现.本文还数值模拟了消相干因素对四维纠缠态保真度的影响,结果表明,只要脉冲参数选取在一定范围内,光纤耗散、腔场耗散和原子自发辐射等不利因素都会被大大抑制.
    Quantum information, as a comprehensive subject of quantum mechanics and information science, has a broad theoretical research value and application prospect. As a resource of quantum information, quantum entanglement has been studied thoroughly, which is not only significant to understand the features of quantum mechanics, but also of great value to the development of the method new quantum information processing. Therefore, the generation of entangled state is widely studied theoretically. In comparison to low-dimensional entangled states, multi-dimensional entangled states are not only safe but also efficient and error-tolerant for quantum computation. The adiabatic technique is one of the most widely used and proven techniques in quantum information science. The main advantages of this technique are that it is insensitive to the fluctuation of experimental parameters, and the interaction time of the system is not required to be controled accurately. However, limited by the adiabatic condition, it usually takes relatively long interaction time in scheme via adiabatic technique to achieve the target states. If the required evolution time is too long, the scheme may be useless. To overcome this problem, researchers have done a lot in the field of finding ways to shorten the long interaction time of adiabatic passage. Among these works, the technique named shortcuts to adiabatic passage is a successful work in this field and it has attracted a great deal of attention in recent years. In this paper, based on transitionless quantum driving to construct shortcuts to adiabatic passage, an efficient scheme to fast generate a four-dimensional entangled state of two-atom is proposed. The atoms are respectively trapped in the separate two-mode cavities which are connected by optical fiber. To achieve an alternative physically feasible system, the non-resonant dynamics is adopted to create a Hamiltonian which can exactly drive the system to evolve along the instantaneous eigenstates of the original Hamiltonian. As a result, if the system goes through adiabatic passage, it will evolve in the dark state, not transit to other states. Hence, using transitionless quantum driving to shortcuts to adiabatic passage, the evolutionary time in this scheme is much less than that in other schemes based on traditional adiabatic passage. The rigorous numerical simulations are conducted. The results show that with suitable pulsed laser parameters, this scheme is robust against decoherence arising from fiber decay, cavity decay and atomic spontaneous emission. Moreover, the scheme is more feasible in physics. That is, based on the proposed scheme, a high-fidelity four-dimensional entangled state of two-atom can be achieved.
      通信作者: 张春玲, mzhangchunling@163.com
    • 基金项目: 福建省教育厅科技项目(批准号:JB14220)资助的课题.
      Corresponding author: Zhang Chun-Ling, mzhangchunling@163.com
    • Funds: Project supported by the Funding from the Fujian Education Department, China (Grant No. JB14220).
    [1]

    Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003

    [2]

    Vitanov N V, Suominen K A, Shore B W 1999 J. Phys. B 32 4535

    [3]

    Zhang C L, Chen M F 2015 Opt. Commun. 339 61

    [4]

    Zhang C L, Chen M F 2015 Chin. Phys. B 24 070310

    [5]

    Zhao Y J, Liu B, Ji Y Q, Tang S Q, Shao X Q 2017 Sci. Rep. 7 16489

    [6]

    Premaratne S P, Wellstood F C, Palmer B S 2017 Nat. Commun. 8 14148

    [7]

    Chen X, Ruschhaupt A, Schmidt S, Campo A D, Odelin D G, Muga J G 2010 Phys. Rev. Lett. 104 063002

    [8]

    Chen X, Lizuain I, Ruschhaupt A, Odelin D G, Muga J G 2010 Phys. Rev. Lett. 105 123003

    [9]

    Wu J L, Ji X, Zhang S 2017 Sci. Rep. 7 46255

    [10]

    Kang Y H, Huang B H, Song J, Lu P M, Xia Y 2017 Laser Phys. Lett. 14 025201

    [11]

    Kang Y H, Chen Y H, Wu Q C, Huang B H, Xia Y, Song J 2016 Sci. Rep. 6 30151

    [12]

    Baksic A, Hugo R H, Clerk A A 2016 Phys. Rev. Lett. 116 230503

    [13]

    Huang B H, Kang Y H, Chen Y H, Wu Q C, Song J, Xia Y 2017 Phys. Rev. A 96 022314

    [14]

    Berry M V 2009 J. Phys. A: Math. Theor. 42 365303

    [15]

    Chen Y H, Xia Y, Song J, Chen Q Q 2015 Sci. Rep. 5 15616

    [16]

    Huang X B, Zhong Z R, Chen Y H 2016 Quantum Inf. Process. 14 4475

    [17]

    Shan W J, Xia Y, Chen Y H, Song J 2016 Quantum Inf. Process. 15 2359

    [18]

    Kaszlikowski D, Gnaciski P, Ukowski M, Miklaszewski W, Zeilinger A 2000 Phys. Rev. Lett. 85 4418

    [19]

    Walborn S P, Lemelle D S, Almeida M P, Ribeiro P H S 2006 Phys. Rev. Lett. 96 090501

    [20]

    Vaziri A, Weihs G, Zeilinger A 2002 Phys. Rev. Lett. 89 240401

    [21]

    Cerf N J, Bourennane M, Karlsson A, Gisin N 2002 Phys. Rev. Lett. 88 127902

    [22]

    Lloyd S 2008 Science 321 1463

    [23]

    Ali-Khan I, Broadbent C J, Howell J C 2007 Phys. Rev. Lett. 98 060503

    [24]

    Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, O’Connell1 A D, Sank D, Wang H H, Wenner J, Cleland A N, Geller A R, Martinis J M 2009 Science 325 722

    [25]

    Lanyon B P, Barbieri M, Almeida M P, Jennewein T, Ralph T C, Resch K J, Pryde G J, O’Brien J L, Gilchrist A, White A G 2009 Nat. Phys. 5 134

    [26]

    Di Y M, Wei H R 2013 Phys. Rev. A 87 012325

    [27]

    Di Y M, Wei H R 2015 Phys. Rev. A 92 062317

    [28]

    Wu J L, Ji X, Zhang S 2016 Sci. Rep. 6 33669

    [29]

    Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y B, Alfonso Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R 2017 Nature 546 622

    [30]

    Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401

    [31]

    Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817

    [32]

    Buck J R, Kimble H J 2003 Phys. Rev. A 67 033806

    [33]

    Mei G H 1996 Ph. D. Dissertation (Wuhan: Chinese Academy of Sciences) (in Chinese) [梅刚华 1996 博士学位论文(武汉: 中国科学院武汉物理与数学研究所)]

    [34]

    Yang Y F, Chen Y H, Wu Q C, Kang Y H, Huang B H, Xia Y 2017 Quantum Inf. Process. 16 15

    [35]

    Mundt A B, Kreuter A, Becher C, Leibfried D, Eschner J, Schmidt-Kaler F, Blatt R 2002 Phys. Rev. Lett. 89 103001

    [36]

    Spillane S M, Kippenberg T J, Painter O J, Vahala K J 2003 Phys. Rev. Lett. 91 043902

  • [1]

    Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003

    [2]

    Vitanov N V, Suominen K A, Shore B W 1999 J. Phys. B 32 4535

    [3]

    Zhang C L, Chen M F 2015 Opt. Commun. 339 61

    [4]

    Zhang C L, Chen M F 2015 Chin. Phys. B 24 070310

    [5]

    Zhao Y J, Liu B, Ji Y Q, Tang S Q, Shao X Q 2017 Sci. Rep. 7 16489

    [6]

    Premaratne S P, Wellstood F C, Palmer B S 2017 Nat. Commun. 8 14148

    [7]

    Chen X, Ruschhaupt A, Schmidt S, Campo A D, Odelin D G, Muga J G 2010 Phys. Rev. Lett. 104 063002

    [8]

    Chen X, Lizuain I, Ruschhaupt A, Odelin D G, Muga J G 2010 Phys. Rev. Lett. 105 123003

    [9]

    Wu J L, Ji X, Zhang S 2017 Sci. Rep. 7 46255

    [10]

    Kang Y H, Huang B H, Song J, Lu P M, Xia Y 2017 Laser Phys. Lett. 14 025201

    [11]

    Kang Y H, Chen Y H, Wu Q C, Huang B H, Xia Y, Song J 2016 Sci. Rep. 6 30151

    [12]

    Baksic A, Hugo R H, Clerk A A 2016 Phys. Rev. Lett. 116 230503

    [13]

    Huang B H, Kang Y H, Chen Y H, Wu Q C, Song J, Xia Y 2017 Phys. Rev. A 96 022314

    [14]

    Berry M V 2009 J. Phys. A: Math. Theor. 42 365303

    [15]

    Chen Y H, Xia Y, Song J, Chen Q Q 2015 Sci. Rep. 5 15616

    [16]

    Huang X B, Zhong Z R, Chen Y H 2016 Quantum Inf. Process. 14 4475

    [17]

    Shan W J, Xia Y, Chen Y H, Song J 2016 Quantum Inf. Process. 15 2359

    [18]

    Kaszlikowski D, Gnaciski P, Ukowski M, Miklaszewski W, Zeilinger A 2000 Phys. Rev. Lett. 85 4418

    [19]

    Walborn S P, Lemelle D S, Almeida M P, Ribeiro P H S 2006 Phys. Rev. Lett. 96 090501

    [20]

    Vaziri A, Weihs G, Zeilinger A 2002 Phys. Rev. Lett. 89 240401

    [21]

    Cerf N J, Bourennane M, Karlsson A, Gisin N 2002 Phys. Rev. Lett. 88 127902

    [22]

    Lloyd S 2008 Science 321 1463

    [23]

    Ali-Khan I, Broadbent C J, Howell J C 2007 Phys. Rev. Lett. 98 060503

    [24]

    Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, O’Connell1 A D, Sank D, Wang H H, Wenner J, Cleland A N, Geller A R, Martinis J M 2009 Science 325 722

    [25]

    Lanyon B P, Barbieri M, Almeida M P, Jennewein T, Ralph T C, Resch K J, Pryde G J, O’Brien J L, Gilchrist A, White A G 2009 Nat. Phys. 5 134

    [26]

    Di Y M, Wei H R 2013 Phys. Rev. A 87 012325

    [27]

    Di Y M, Wei H R 2015 Phys. Rev. A 92 062317

    [28]

    Wu J L, Ji X, Zhang S 2016 Sci. Rep. 6 33669

    [29]

    Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y B, Alfonso Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R 2017 Nature 546 622

    [30]

    Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401

    [31]

    Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817

    [32]

    Buck J R, Kimble H J 2003 Phys. Rev. A 67 033806

    [33]

    Mei G H 1996 Ph. D. Dissertation (Wuhan: Chinese Academy of Sciences) (in Chinese) [梅刚华 1996 博士学位论文(武汉: 中国科学院武汉物理与数学研究所)]

    [34]

    Yang Y F, Chen Y H, Wu Q C, Kang Y H, Huang B H, Xia Y 2017 Quantum Inf. Process. 16 15

    [35]

    Mundt A B, Kreuter A, Becher C, Leibfried D, Eschner J, Schmidt-Kaler F, Blatt R 2002 Phys. Rev. Lett. 89 103001

    [36]

    Spillane S M, Kippenberg T J, Painter O J, Vahala K J 2003 Phys. Rev. Lett. 91 043902

  • [1] 王雪梅, 张安琪, 赵生妹. 电路量子电动力学中基于超绝热捷径的控制相位门实现. 物理学报, 2022, 71(15): 150301. doi: 10.7498/aps.71.20220248
    [2] 陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中. 基于纠缠相干态的量子照明雷达. 物理学报, 2021, 70(17): 170601. doi: 10.7498/aps.70.20210462
    [3] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [4] 计彦强, 王洁, 刘颖莉, 张大伟, 肖瑞杰, 董莉, 修晓明. 基于里德伯超级原子快速制备三粒子单重态. 物理学报, 2021, 70(12): 120301. doi: 10.7498/aps.70.20201841
    [5] 管勇, 刘丹丹, 王心亮, 张辉, 施俊如, 白杨, 阮军, 张首刚. 绝热跃迁方法测量铯喷泉钟冷原子碰撞频移. 物理学报, 2020, 69(14): 140601. doi: 10.7498/aps.69.20191800
    [6] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控. 物理学报, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [7] 于宛让, 计新. 基于超绝热捷径技术快速制备超导三量子比特Greenberger-Horne-Zeilinger态. 物理学报, 2019, 68(3): 030302. doi: 10.7498/aps.68.20181922
    [8] 李晓克, 冯伟. 非绝热分子动力学的量子路径模拟. 物理学报, 2017, 66(15): 153101. doi: 10.7498/aps.66.153101
    [9] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制. 物理学报, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [10] 余飞, 王春华, 尹晋文, 徐浩. 一个具有完全四翼形式的四维混沌. 物理学报, 2012, 61(2): 020506. doi: 10.7498/aps.61.020506
    [11] 唐有良, 刘 翔, 张小伟, 唐筱芳. 用一个纠缠态实现多粒子纠缠态的量子隐形传送. 物理学报, 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [12] 李艳玲, 冯 健, 於亚飞. 量子纠缠态的普适远程克隆. 物理学报, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [13] 刘扬正, 姜长生, 林长圣, 孙 晗. 四维切换超混沌系统. 物理学报, 2007, 56(9): 5131-5135. doi: 10.7498/aps.56.5131
    [14] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态. 物理学报, 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [15] 白丽华, 张庆刚, 刘新国. D+CD4→CD3+D2反应的四维量子散射计算. 物理学报, 2003, 52(11): 2774-2780. doi: 10.7498/aps.52.2774
    [16] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度. 物理学报, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
    [17] 赖云忠, 李卫东, 梁九卿. Kerr介质中电子的绝热跃迁转移现象和光场的量子统计性质. 物理学报, 1998, 47(9): 1489-1497. doi: 10.7498/aps.47.1489
    [18] 袁进胜, 孙昌璞. 旋转样品核四极共振的量子绝热微扰论分析. 物理学报, 1995, 44(1): 29-34. doi: 10.7498/aps.44.29
    [19] 林仁明, 张林. 受驱动光学系统多光子量子统计理论(Ⅲ)——绝热消除方法的改进. 物理学报, 1989, 38(4): 548-558. doi: 10.7498/aps.38.548
    [20] 赵峥. 四维静态黎曼时空中的Hawking辐射. 物理学报, 1981, 30(11): 1508-1519. doi: 10.7498/aps.30.1508
计量
  • 文章访问数:  5697
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-08
  • 修回日期:  2018-05-14
  • 刊出日期:  2019-08-20

/

返回文章
返回