-
作为量子信息处理的载体,量子纠缠态一直以来都是量子信息领域的研究热点.相比于低维纠缠态,高维纠缠态使得量子通信具有更快的传输速度、更强的安全性、更高的噪声容忍阈值等特点.另外,绝热技术因其对实验参数起伏不敏感而被广泛应用于纠缠态的制备,然而绝热过程需要相当长的演化时间,因此绝热捷径应运而生.本文提出了一种采用无跃迁量子驱动构建绝热捷径实现快速制备两个原子的四维纠缠态的理论方案,该系统中的两个原子分别被囚禁在两个由光纤连接的双模腔中.为了获得一个技术上可操作的物理系统,本方案采用能级失谐设计出一个可精确驱动系统沿着某一个系统的瞬时本征态演化的哈密顿.该方案所采用的无跃迁量子驱动构建绝热捷径不仅大大缩短了演化时间,而且在实验上也比较容易实现.本文还数值模拟了消相干因素对四维纠缠态保真度的影响,结果表明,只要脉冲参数选取在一定范围内,光纤耗散、腔场耗散和原子自发辐射等不利因素都会被大大抑制.Quantum information, as a comprehensive subject of quantum mechanics and information science, has a broad theoretical research value and application prospect. As a resource of quantum information, quantum entanglement has been studied thoroughly, which is not only significant to understand the features of quantum mechanics, but also of great value to the development of the method new quantum information processing. Therefore, the generation of entangled state is widely studied theoretically. In comparison to low-dimensional entangled states, multi-dimensional entangled states are not only safe but also efficient and error-tolerant for quantum computation. The adiabatic technique is one of the most widely used and proven techniques in quantum information science. The main advantages of this technique are that it is insensitive to the fluctuation of experimental parameters, and the interaction time of the system is not required to be controled accurately. However, limited by the adiabatic condition, it usually takes relatively long interaction time in scheme via adiabatic technique to achieve the target states. If the required evolution time is too long, the scheme may be useless. To overcome this problem, researchers have done a lot in the field of finding ways to shorten the long interaction time of adiabatic passage. Among these works, the technique named shortcuts to adiabatic passage is a successful work in this field and it has attracted a great deal of attention in recent years. In this paper, based on transitionless quantum driving to construct shortcuts to adiabatic passage, an efficient scheme to fast generate a four-dimensional entangled state of two-atom is proposed. The atoms are respectively trapped in the separate two-mode cavities which are connected by optical fiber. To achieve an alternative physically feasible system, the non-resonant dynamics is adopted to create a Hamiltonian which can exactly drive the system to evolve along the instantaneous eigenstates of the original Hamiltonian. As a result, if the system goes through adiabatic passage, it will evolve in the dark state, not transit to other states. Hence, using transitionless quantum driving to shortcuts to adiabatic passage, the evolutionary time in this scheme is much less than that in other schemes based on traditional adiabatic passage. The rigorous numerical simulations are conducted. The results show that with suitable pulsed laser parameters, this scheme is robust against decoherence arising from fiber decay, cavity decay and atomic spontaneous emission. Moreover, the scheme is more feasible in physics. That is, based on the proposed scheme, a high-fidelity four-dimensional entangled state of two-atom can be achieved.
-
Keywords:
- four-dimensional entangled state /
- shortcuts to adiabatic passage /
- transitionless quantum driving
[1] Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003
[2] Vitanov N V, Suominen K A, Shore B W 1999 J. Phys. B 32 4535
[3] Zhang C L, Chen M F 2015 Opt. Commun. 339 61
[4] Zhang C L, Chen M F 2015 Chin. Phys. B 24 070310
[5] Zhao Y J, Liu B, Ji Y Q, Tang S Q, Shao X Q 2017 Sci. Rep. 7 16489
[6] Premaratne S P, Wellstood F C, Palmer B S 2017 Nat. Commun. 8 14148
[7] Chen X, Ruschhaupt A, Schmidt S, Campo A D, Odelin D G, Muga J G 2010 Phys. Rev. Lett. 104 063002
[8] Chen X, Lizuain I, Ruschhaupt A, Odelin D G, Muga J G 2010 Phys. Rev. Lett. 105 123003
[9] Wu J L, Ji X, Zhang S 2017 Sci. Rep. 7 46255
[10] Kang Y H, Huang B H, Song J, Lu P M, Xia Y 2017 Laser Phys. Lett. 14 025201
[11] Kang Y H, Chen Y H, Wu Q C, Huang B H, Xia Y, Song J 2016 Sci. Rep. 6 30151
[12] Baksic A, Hugo R H, Clerk A A 2016 Phys. Rev. Lett. 116 230503
[13] Huang B H, Kang Y H, Chen Y H, Wu Q C, Song J, Xia Y 2017 Phys. Rev. A 96 022314
[14] Berry M V 2009 J. Phys. A: Math. Theor. 42 365303
[15] Chen Y H, Xia Y, Song J, Chen Q Q 2015 Sci. Rep. 5 15616
[16] Huang X B, Zhong Z R, Chen Y H 2016 Quantum Inf. Process. 14 4475
[17] Shan W J, Xia Y, Chen Y H, Song J 2016 Quantum Inf. Process. 15 2359
[18] Kaszlikowski D, Gnaciski P, Ukowski M, Miklaszewski W, Zeilinger A 2000 Phys. Rev. Lett. 85 4418
[19] Walborn S P, Lemelle D S, Almeida M P, Ribeiro P H S 2006 Phys. Rev. Lett. 96 090501
[20] Vaziri A, Weihs G, Zeilinger A 2002 Phys. Rev. Lett. 89 240401
[21] Cerf N J, Bourennane M, Karlsson A, Gisin N 2002 Phys. Rev. Lett. 88 127902
[22] Lloyd S 2008 Science 321 1463
[23] Ali-Khan I, Broadbent C J, Howell J C 2007 Phys. Rev. Lett. 98 060503
[24] Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, O’Connell1 A D, Sank D, Wang H H, Wenner J, Cleland A N, Geller A R, Martinis J M 2009 Science 325 722
[25] Lanyon B P, Barbieri M, Almeida M P, Jennewein T, Ralph T C, Resch K J, Pryde G J, O’Brien J L, Gilchrist A, White A G 2009 Nat. Phys. 5 134
[26] Di Y M, Wei H R 2013 Phys. Rev. A 87 012325
[27] Di Y M, Wei H R 2015 Phys. Rev. A 92 062317
[28] Wu J L, Ji X, Zhang S 2016 Sci. Rep. 6 33669
[29] Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y B, Alfonso Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R 2017 Nature 546 622
[30] Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401
[31] Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817
[32] Buck J R, Kimble H J 2003 Phys. Rev. A 67 033806
[33] Mei G H 1996 Ph. D. Dissertation (Wuhan: Chinese Academy of Sciences) (in Chinese) [梅刚华 1996 博士学位论文(武汉: 中国科学院武汉物理与数学研究所)]
[34] Yang Y F, Chen Y H, Wu Q C, Kang Y H, Huang B H, Xia Y 2017 Quantum Inf. Process. 16 15
[35] Mundt A B, Kreuter A, Becher C, Leibfried D, Eschner J, Schmidt-Kaler F, Blatt R 2002 Phys. Rev. Lett. 89 103001
[36] Spillane S M, Kippenberg T J, Painter O J, Vahala K J 2003 Phys. Rev. Lett. 91 043902
-
[1] Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003
[2] Vitanov N V, Suominen K A, Shore B W 1999 J. Phys. B 32 4535
[3] Zhang C L, Chen M F 2015 Opt. Commun. 339 61
[4] Zhang C L, Chen M F 2015 Chin. Phys. B 24 070310
[5] Zhao Y J, Liu B, Ji Y Q, Tang S Q, Shao X Q 2017 Sci. Rep. 7 16489
[6] Premaratne S P, Wellstood F C, Palmer B S 2017 Nat. Commun. 8 14148
[7] Chen X, Ruschhaupt A, Schmidt S, Campo A D, Odelin D G, Muga J G 2010 Phys. Rev. Lett. 104 063002
[8] Chen X, Lizuain I, Ruschhaupt A, Odelin D G, Muga J G 2010 Phys. Rev. Lett. 105 123003
[9] Wu J L, Ji X, Zhang S 2017 Sci. Rep. 7 46255
[10] Kang Y H, Huang B H, Song J, Lu P M, Xia Y 2017 Laser Phys. Lett. 14 025201
[11] Kang Y H, Chen Y H, Wu Q C, Huang B H, Xia Y, Song J 2016 Sci. Rep. 6 30151
[12] Baksic A, Hugo R H, Clerk A A 2016 Phys. Rev. Lett. 116 230503
[13] Huang B H, Kang Y H, Chen Y H, Wu Q C, Song J, Xia Y 2017 Phys. Rev. A 96 022314
[14] Berry M V 2009 J. Phys. A: Math. Theor. 42 365303
[15] Chen Y H, Xia Y, Song J, Chen Q Q 2015 Sci. Rep. 5 15616
[16] Huang X B, Zhong Z R, Chen Y H 2016 Quantum Inf. Process. 14 4475
[17] Shan W J, Xia Y, Chen Y H, Song J 2016 Quantum Inf. Process. 15 2359
[18] Kaszlikowski D, Gnaciski P, Ukowski M, Miklaszewski W, Zeilinger A 2000 Phys. Rev. Lett. 85 4418
[19] Walborn S P, Lemelle D S, Almeida M P, Ribeiro P H S 2006 Phys. Rev. Lett. 96 090501
[20] Vaziri A, Weihs G, Zeilinger A 2002 Phys. Rev. Lett. 89 240401
[21] Cerf N J, Bourennane M, Karlsson A, Gisin N 2002 Phys. Rev. Lett. 88 127902
[22] Lloyd S 2008 Science 321 1463
[23] Ali-Khan I, Broadbent C J, Howell J C 2007 Phys. Rev. Lett. 98 060503
[24] Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, O’Connell1 A D, Sank D, Wang H H, Wenner J, Cleland A N, Geller A R, Martinis J M 2009 Science 325 722
[25] Lanyon B P, Barbieri M, Almeida M P, Jennewein T, Ralph T C, Resch K J, Pryde G J, O’Brien J L, Gilchrist A, White A G 2009 Nat. Phys. 5 134
[26] Di Y M, Wei H R 2013 Phys. Rev. A 87 012325
[27] Di Y M, Wei H R 2015 Phys. Rev. A 92 062317
[28] Wu J L, Ji X, Zhang S 2016 Sci. Rep. 6 33669
[29] Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y B, Alfonso Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R 2017 Nature 546 622
[30] Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401
[31] Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817
[32] Buck J R, Kimble H J 2003 Phys. Rev. A 67 033806
[33] Mei G H 1996 Ph. D. Dissertation (Wuhan: Chinese Academy of Sciences) (in Chinese) [梅刚华 1996 博士学位论文(武汉: 中国科学院武汉物理与数学研究所)]
[34] Yang Y F, Chen Y H, Wu Q C, Kang Y H, Huang B H, Xia Y 2017 Quantum Inf. Process. 16 15
[35] Mundt A B, Kreuter A, Becher C, Leibfried D, Eschner J, Schmidt-Kaler F, Blatt R 2002 Phys. Rev. Lett. 89 103001
[36] Spillane S M, Kippenberg T J, Painter O J, Vahala K J 2003 Phys. Rev. Lett. 91 043902
计量
- 文章访问数: 5554
- PDF下载量: 124
- 被引次数: 0