-
原子系综内部分原子发生相干态转移后所处量子态被称为集体激发态.如果激发数目在单原子量级则被称为单激发态.在量子存储过程中,单光子以单激发态的形式在原子系综内进行存储.因此,研究单激发态的制备、演化、转化、干涉等过程是量子存储及其应用研究的关键.本文总结了近年来作者所在研究团队针对冷原子系综体系在此研究方向取得的若干成果.主要包括采用动量模式调控、三维光晶格等手段抑制单激发态的退相干,采用环形腔增强原子至光子的转化效率,发展基于拉曼光的单激发态相干转移技术,利用单量子态不同模式间干涉制备光与原子纠缠,利用里德伯阻塞机制提升纠缠制备效率等.此外,简要回顾了基于多个单激发态的量子中继及量子网络实验.Single photons are the best carriers of quantum information for long-distance transmission. Nevertheless, maximal achievable distance is limited by the exponential decay of photons as a function of link length. The protocol of quantum repeater provides a promising solution by replacing direction transmission with segmented entanglement distribution and entanglement connection via swapping. The quantum repeater necessitates a key element of quantum memory for making efficient interconnections. An atomic ensemble is very suitable for this purpose due to the collective enhanced interaction. Single photons are stored as collective excitations in an atomic ensemble. Thus a comprehensive study of the physics relating to collective excitations is crucially important for improving the quantum memory performance and its reachable applications in quantum repeater and quantum network. In this article, we review our experimental work on cold atomic ensembles in recent years, focusing on the coherent manipulation of collective excitations. We first briefly introduce the general concept of collective excitations and the preparation process through spontaneous Raman scattering, and we review our experimental work on extending the coherence time, such as suppressing motional dephasing by increasing the spin-wave wavelength, by confining atoms with a three-dimensional optical lattice. Afterwards, we discuss about the retrieval process of collective excitations and review our experiments on using a ring-cavity enhanced setup to improve the retrieval efficiency. The coherent qubit operation in a quantum memory is very useful for enabling new functionalities for a quantum network, in a subsequent section, we thus review our work on developing Raman-based coherent operations for single excitations. Afterwards, we mention our experiments on creating a pair of atom-photon entanglement by interfering two modes of a collective excitation. Improving the entanglement preparation efficiency is crucially important, and Rydberg-based interaction provides a promising solution. Our experimental work in this direction is also reviewed. Additionally, as an application in coherent manipulation with collective excitations, we show several experiments on using excitations in remote atomic memories and demonstrating basic functionality of quantum repeater and quantum network. In short, significant progress has been made in the coherent manipulation of single collective excitations in cold atomic ensembles, and further improvement will be accelerated by the Rydberg-enabled interactions; practical applications in quantum repeater and quantum network is foreseeable in the near future.
-
Keywords:
- collective excitation /
- single excitation /
- atomic ensemble /
- quantum memory
[1] Briegel H J, Dr W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932
[2] Duan L M, Lukin M, Cirac J I, Zoller P 2001 Nature 414 413
[3] Kuzmich A, Bowen W, Boozer A, Boca A, Chou C, Duan L M, Kimble H 2003 Nature 423 731
[4] Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33
[5] Felinto D, Chou C, de Riedmatten H, Polyakov S, Kimble H 2005 Phys. Rev. A 72 053809
[6] Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nat. Phys. 5 95
[7] Bao X H, Reingruber A, Dietrich P, Rui J, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517
[8] Zhao R, Dudin Y, Jenkins S, Campbell C, Matsukevich D, Kennedy T, Kuzmich A 2009 Nat. Phys. 5 100
[9] Radnaev A, Dudin Y, Zhao R, Jen H, Jenkins S, Kuzmich A, Kennedy T 2010 Nat. Phys. 6 894
[10] Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photon. 10 381
[11] Lundblad N, Schlosser M, Porto J 2010 Phys. Rev. A 84 051606(R)
[12] Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379
[13] Simon J, Tanji H, Thompson J K, Vuletić V 2007 Phys. Rev. Lett. 98 183601
[14] Rui J, Jiang Y, Yang S J, Zhao B, Bao X H, Pan J W 2015 Phys. Rev. Lett. 115 133002
[15] Jiang Y, Rui J, Bao X H, Pan J W 2016 Phys. Rev. A 93 063819
[16] Zhao B, Chen Z B, Chen Y A, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 98 240502
[17] Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505
[18] Bao X H, Yong Q, Yang J, Zhang H, Chen Z B, Yang T, Pan J W 2008 Phys. Rev. Lett. 101 190501
[19] Zhang H, Jin X M, Yang J, Dai H N, Yang S J, Zhao T M, Rui J, He Y, Jiang X, Yang F, Pan G S, Yuan Z S, Deng Y, Chen Z B, Bao X H, Chen S, Zhao B, Pan J W 2011 Nat. Photon. 5 628
[20] Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501
[21] Saffman M, Walker T G, Mölmer K 2010 Rev. Mod. Phys. 82 2313
[22] Zhao B, Mller M, Hammerer K, Zoller P 2010 Phys. Rev. A 81 052329
[23] Han Y, He B, Heshami K, Li C Z, Simon C 2010 Phys. Rev. A 81 052311
[24] Dudin Y, Kuzmich A 2012 Science 336 887
[25] Li J, Zhou M T, Jing B, Wang X J, Yang S J, Jiang X, Mölmer K, Bao X H, Pan J W 2016 Phys. Rev. Lett. 117 180501
[26] Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098
[27] Bao X H, Xu X F, Li C M, Yuan Z S, Lu C Y, Pan J W 2012 Proc. Natl. Acad. Sci. U.S.A. 109 20347
[28] Zhao T M, Zhang H, Yang J, Sang Z R, Jiang X, Bao X H, Pan J W 2014 Phys. Rev. Lett. 112 103602
-
[1] Briegel H J, Dr W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932
[2] Duan L M, Lukin M, Cirac J I, Zoller P 2001 Nature 414 413
[3] Kuzmich A, Bowen W, Boozer A, Boca A, Chou C, Duan L M, Kimble H 2003 Nature 423 731
[4] Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33
[5] Felinto D, Chou C, de Riedmatten H, Polyakov S, Kimble H 2005 Phys. Rev. A 72 053809
[6] Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nat. Phys. 5 95
[7] Bao X H, Reingruber A, Dietrich P, Rui J, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517
[8] Zhao R, Dudin Y, Jenkins S, Campbell C, Matsukevich D, Kennedy T, Kuzmich A 2009 Nat. Phys. 5 100
[9] Radnaev A, Dudin Y, Zhao R, Jen H, Jenkins S, Kuzmich A, Kennedy T 2010 Nat. Phys. 6 894
[10] Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photon. 10 381
[11] Lundblad N, Schlosser M, Porto J 2010 Phys. Rev. A 84 051606(R)
[12] Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379
[13] Simon J, Tanji H, Thompson J K, Vuletić V 2007 Phys. Rev. Lett. 98 183601
[14] Rui J, Jiang Y, Yang S J, Zhao B, Bao X H, Pan J W 2015 Phys. Rev. Lett. 115 133002
[15] Jiang Y, Rui J, Bao X H, Pan J W 2016 Phys. Rev. A 93 063819
[16] Zhao B, Chen Z B, Chen Y A, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 98 240502
[17] Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505
[18] Bao X H, Yong Q, Yang J, Zhang H, Chen Z B, Yang T, Pan J W 2008 Phys. Rev. Lett. 101 190501
[19] Zhang H, Jin X M, Yang J, Dai H N, Yang S J, Zhao T M, Rui J, He Y, Jiang X, Yang F, Pan G S, Yuan Z S, Deng Y, Chen Z B, Bao X H, Chen S, Zhao B, Pan J W 2011 Nat. Photon. 5 628
[20] Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501
[21] Saffman M, Walker T G, Mölmer K 2010 Rev. Mod. Phys. 82 2313
[22] Zhao B, Mller M, Hammerer K, Zoller P 2010 Phys. Rev. A 81 052329
[23] Han Y, He B, Heshami K, Li C Z, Simon C 2010 Phys. Rev. A 81 052311
[24] Dudin Y, Kuzmich A 2012 Science 336 887
[25] Li J, Zhou M T, Jing B, Wang X J, Yang S J, Jiang X, Mölmer K, Bao X H, Pan J W 2016 Phys. Rev. Lett. 117 180501
[26] Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098
[27] Bao X H, Xu X F, Li C M, Yuan Z S, Lu C Y, Pan J W 2012 Proc. Natl. Acad. Sci. U.S.A. 109 20347
[28] Zhao T M, Zhang H, Yang J, Sang Z R, Jiang X, Bao X H, Pan J W 2014 Phys. Rev. Lett. 112 103602
计量
- 文章访问数: 8368
- PDF下载量: 263
- 被引次数: 0