搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋-轨道耦合玻色气体中集体激发动力学

郑鸿燕 原梓洲 渠晓旭 胥文雨 陈小龙

引用本文:
Citation:

自旋-轨道耦合玻色气体中集体激发动力学

郑鸿燕, 原梓洲, 渠晓旭, 胥文雨, 陈小龙

Collective excitation dynamics in spin-orbit coupled Bose gases

Zheng Honyan, Yuan Zizhou, Qu Xiaoxu, Xu Wenyu, Chen Xiao-Long
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 基于数值求解定态与含时Gross-Pitaevskii方程,本文研究了一维拉曼型自旋-轨道耦合玻色气体中的静态特性与低能集体激发动力学性质.我们分析了凝聚体动量、自旋极化率和基态能量来分类三种基态物相(条纹相、平面波相和零动量相)以及对应的相变.在此基础上,通过设计不同的微扰激发方式,我们重点研究了四种典型的低能集体激发模式(偶极、呼吸、自旋-偶极和自旋-呼吸模式)的频率特性和动力学行为.我们发现,四种模式频率随拉比频率增加呈现非单调变化行为且不同物相中的集体激发模式表现出显著差异,尤其是自旋相关的两种模式在条纹相中呈现自旋自由度相关的独特振荡行为.这些发现将为理解自旋-轨道耦合玻色气体中新奇物相的量子多体动力学提供了重要参考和理论依据.
    By numerically solving the static and time-dependent Gross-Pitaevskii equations, we systematically investigate the ground-state properties and collective excitations of a weakly interacting Bose gas with the Raman-type spin-orbit coupling in one dimension. Our analysis focuses on three distinct quantum phases— the stripe phase, plane-wave phase, and zero-momentum phase—characterizing their key static properties, such as condensate momentum, spin polarization, and ground-state energy. Using time-dependent simulations, we explore the dynamics of total-density collective modes, including the dipole mode, which drives harmonic oscillations of the atomic cloud’ s center of mass, and the breathing mode, responsible for periodic expansion and contraction of the density profile. The modes’ frequencies exhibit a non-monotonic dependence on the Rabi frequency across the three phases and are significantly suppressed at the transition point between the plane-wave and the zero-momentum phases. Additionally, we study spin-dependent collective excitations, particularly the spin-dipole and spin-breathing modes, governed by the time-dependent spin density distribution $\left(\delta n(x, t) \equiv n_{\uparrow}(x, t)-n_{\downarrow}(x, t)\right)$ as shown in the following figure. Our results reveal that two spin oscillation modes exist only in the stripe and zero-momentum phases, with frequencies remarkably higher in the latter. Notably, in the stripe phase, mode frequencies decrease monotonically with increasing Rabi frequency, whereas they rise linearly in the zero-momentum phase. The spin-dipole mode induces rigid, out-of-phase oscillations of the two spin components, while the spin-breathing mode modulates the spin density distribution periodically. These findings offer fundamental theoretical insights into the dynamic behavior of spin-orbit-coupled quantum gases, particularly regarding spin-related collective excitations, and provide valuable guidance for future cold-atom experiments.
  • [1]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80885

    [2]

    Dalibard J, Gerbier F, Juzeliūnas G, Öhberg P 2011 Rev. Mod. Phys. 831523

    [3]

    Goldman N, Juzeliūnas G, Öhberg P, Spielman I B 2014 Rep. Prog. Phys. 77126401

    [4]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 47183

    [5]

    Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109095301

    [6]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109095302

    [7]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 35483

    [8]

    Huang L, Meng Z, Wang P, Peng P, Zhang S L, Chen L, Li D, Zhou Q, Zhang J 2016 Nat. Phys. 12540

    [9]

    Chen H R, Lin K Y, Chen P K, Chiu N C, Wang J B, Chen C A, Huang P, Yip S K, Kawaguchi Y, Lin Y J 2018 Phys. Rev. Lett. 121113204

    [10]

    Zhang D, Gao T, Zou P, Kong L, Li R, Shen X, Chen X L, Peng S G, Zhan M, Pu H, Jiang K 2019 Phys. Rev. Lett. 122110402

    [11]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372271

    [12]

    Galitski V, Spielman I B 2013 Nature 49449

    [13]

    Zhai H 2015 Rep. Prog. Phys. 78026001

    [14]

    Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105160403

    [15]

    Ho T L, Zhang S 2011 Phys. Rev. Lett. 107150403

    [16]

    Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108225301

    [17]

    Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108010402

    [18]

    Gong M, Tewari S, Zhang C 2011 Phys. Rev. Lett. 107195303

    [19]

    Hu H, Jiang L, Liu X J, Pu H 2011 Phys. Rev. Lett. 107195304

    [20]

    Yu Z Q, Zhai H 2011 Phys. Rev. Lett. 107195305

    [21]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109115301

    [22]

    Khamehchi M A, Zhang Y, Hamner C, Busch T, Engels P 2014 Phys. Rev. A 90063624

    [23]

    Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, Pan J W 2014 Nat. Phys. 10314

    [24]

    Ji S C, Zhang L, Xu X T, Wu Z, Deng Y, Chen S, Pan J W 2015 Phys. Rev. Lett. 114105301

    [25]

    Zhu Q, Zhang C, Wu B 2012 EPL 10050003

    [26]

    Zhang Y C, Yu Z Q, Ng T K, Zhang S, Pitaevskii L, Stringari S 2016 Phys. Rev. A 94033635

    [27]

    Yu Z Q 2017 Phys. Rev. A 95033618

    [28]

    Chen X L, Wang J, Li Y, Liu X J, Hu H 2018 Phys. Rev. A 98013614

    [29]

    Chen X L, Liu X J, Hu H 2022 Phys. Rev. A 106023302

    [30]

    Meng Z, Huang L, Peng P, Li D, Chen L, Xu Y, Zhang C, Wang P, Zhang J 2016 Phys. Rev. Lett. 117235304

    [31]

    Sun W, Yi C R, Wang B Z, Zhang W W, Sanders B C, Xu X T, Wang Z Y, Schmiedmayer J, Deng Y, Liu X J, Chen S, Pan J W 2018 Phys. Rev. Lett. 121250403

    [32]

    Zhang J Y, Yi C R, Zhang L, Jiao R H, Shi K Y, Yuan H, Zhang W, Liu X J, Chen S, Pan J W 2023 Phys. Rev. Lett. 130043201

    [33]

    Martone G I, Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. A 86063621

    [34]

    Zheng W, Yu Z Q, Cui X, Zhai H 2013 J. Phys. B: At. Mol. Opt. Phys. 46134007

    [35]

    Chen X L, Liu X J, Hu H 2017 Phys. Rev. A 96013625

    [36]

    Chen L, Pu H, Yu Z Q, Zhang Y 2017 Phys. Rev. A 95033616

    [37]

    Rajat, Roy A, Gautam S 2022 Phys. Rev. A 106013304

    [38]

    Liang J C, Zhang A X, Xue J K 2024 Phys. Rev. A 109053307

    [39]

    Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F Ç, Jamison A O, Ketterle W 2017 Nature 54391

    [40]

    Léonard J, Morales A, Zupancic P, Esslinger T, Donner T 2017 Nature 54387

    [41]

    Geier K T, Martone G I, Hauke P, Stringari S 2021 Phys. Rev. Lett. 127115301

    [42]

    Geier K T, Martone G I, Hauke P, Ketterle W, Stringari S 2023 Phys. Rev. Lett. 130156001

    [43]

    Li Y, Martone G I, Stringari S 2012 EPL 9956008

    [44]

    Sartori A, Marino J, Stringari S, Recati A 2015 New J. Phys. 17093036

    [45]

    Bienaimé T, Fava E, Colzi G, Mordini C, Serafini S, Qu C, Stringari S, Lamporesi G, Ferrari G 2016 Phys. Rev. A 94063652

    [46]

    Fava E, Bienaimé T, Mordini C, Colzi G, Qu C, Stringari S, Lamporesi G, Ferrari G 2018 Phys. Rev. Lett. 120170401

    [47]

    Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71463

    [48]

    Menotti C, Stringari S 2002 Phys. Rev. A 66043610

    [49]

    Pitaevskii L, Stringari S 2016 Bose-Einstein Condensation and Superfluidity, vol. 164 of International Series of Monographs on Physics (Oxford University Press, Oxford), pp 401–424.

  • [1] 樊景涛, 贾锁堂. 自旋-轨道耦合玻色凝聚体中的自旋频谱动力学响应. 物理学报, doi: 10.7498/aps.74.20241783
    [2] 王欢, 贺夏瑶, 李帅, 刘博. 非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学. 物理学报, doi: 10.7498/aps.72.20222401
    [3] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解. 物理学报, doi: 10.7498/aps.72.20222319
    [4] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质. 物理学报, doi: 10.7498/aps.72.20231076
    [5] 袁家望, 陈立, 张云波. 自旋-轨道耦合玻色爱因斯坦凝聚中多能级绝热消除理论. 物理学报, doi: 10.7498/aps.72.20231052
    [6] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, doi: 10.7498/aps.71.20220697
    [7] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, doi: 10.7498/aps.69.20191424
    [8] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态. 物理学报, doi: 10.7498/aps.69.20200372
    [9] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, doi: 10.7498/aps.68.20182013
    [10] 安子烨, 王旭杰, 苑震生, 包小辉, 潘建伟. 冷原子系综内单集体激发态的相干操纵. 物理学报, doi: 10.7498/aps.67.20181183
    [11] 李吉, 刘伍明. 梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究. 物理学报, doi: 10.7498/aps.67.20180539
    [12] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度. 物理学报, doi: 10.7498/aps.66.220301
    [13] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿. 物理学报, doi: 10.7498/aps.63.110306
    [14] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, doi: 10.7498/aps.62.100306
    [15] 鱼自发, 吴建鹏, 王鹏程, 张娇娇, 唐荣安, 薛具奎. 超流Fermi气体在非简谐势阱中的集体激发. 物理学报, doi: 10.7498/aps.61.010301
    [16] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩. 物理学报, doi: 10.7498/aps.58.3679
    [17] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性. 物理学报, doi: 10.7498/aps.57.4700
    [18] 王志霞, 张喜和, 沈 柯. 玻色-爱因斯坦凝聚中的混沌反控制. 物理学报, doi: 10.7498/aps.57.7586
    [19] 李菊萍, 谭 磊, 臧小飞, 杨 科. 偶极旋量玻色-爱因斯坦凝聚体在外场中的自旋混合动力学. 物理学报, doi: 10.7498/aps.57.7467
    [20] 王冠芳, 刘 红. 扫描磁场中玻色-爱因斯坦凝聚体系的奇异自旋隧穿. 物理学报, doi: 10.7498/aps.57.667
计量
  • 文章访问数:  22
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-10

/

返回文章
返回