搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋-轨道耦合玻色气体中集体激发动力学

郑鸿燕 原梓洲 渠晓旭 胥文雨 陈小龙

引用本文:
Citation:

自旋-轨道耦合玻色气体中集体激发动力学

郑鸿燕, 原梓洲, 渠晓旭, 胥文雨, 陈小龙

Collective excitation dynamics in spin-orbit coupled Bose gases

Zheng Honyan, Yuan Zizhou, Qu Xiaoxu, Xu Wenyu, Chen Xiao-Long
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于数值求解定态与含时Gross-Pitaevskii方程, 本文研究了一维拉曼型自旋-轨道耦合玻色气体中的静态特性与低能集体激发动力学性质. 我们分析了凝聚体动量、自旋极化率和基态能量来分类三种基态物相(条纹相、平面波相和零动量相)以及对应的相变. 在此基础上, 通过设计不同的微扰激发方式, 我们重点研究了四种典型的低能集体激发模式(偶极、呼吸、自旋-偶极和自旋-呼吸模式)的频率特性和动力学行为. 我们发现, 四种模式频率随拉比频率增加呈现非单调变化行为且不同物相中的集体激发模式表现出显著差异, 尤其是自旋相关的两种模式在条纹相中呈现自旋自由度相关的独特振荡行为. 这些发现将为理解自旋-轨道耦合玻色气体中新奇物相的量子多体动力学提供了重要参考和理论依据.
    By numerically solving the static and time-dependent Gross-Pitaevskii equations, we systematically investigate the ground-state properties and collective excitations of a weakly interacting Bose gas with the Raman-type spin-orbit coupling in one dimension. Our analysis focuses on three distinct quantum phases—the stripe phase, plane-wave phase, and zero-momentum phase—characterizing their key static properties, such as condensate momentum, spin polarization, and ground-state energy. Using time-dependent simulations, we explore the dynamics of total-density collective modes, including the dipole mode, which drives harmonic oscillations of the atomic cloud's center of mass, and the breathing mode, responsible for periodic expansion and contraction of the density profile. The modes' frequencies exhibit a non-monotonic dependence on the Rabi frequency across the three phases and are significantly suppressed at the transition point between the plane-wave and the zero-momentum phases. Additionally, we study spin-dependent collective excitations, particularly the spin-dipole and spin-breathing modes, governed by the time-dependent spin density distribution $(\delta n(x, t) \equiv n_\uparrow(x, t)-n_\downarrow(x, t)$) as shown in the following figure. Our results reveal that two spin oscillation modes exist only in the stripe and zero-momentum phases, with frequencies remarkably higher in the latter. Notably, in the stripe phase, mode frequencies decrease monotonically with increasing Rabi frequency, whereas they rise linearly in the zero-momentum phase. The spin-dipole mode induces rigid, out-of-phase oscillations of the two spin components, while the spin-breathing mode modulates the spin density distribution periodically. These findings offer fundamental theoretical insights into the dynamic behavior of spin-orbit-coupled quantum gases, particularly regarding spin-related collective excitations, and provide valuable guidance for future cold-atom experiments.
  • 图 1  拉曼型自旋-轨道耦合玻色气体三种基态物相 ST、PW 以及 ZM 中 (a)凝聚体动量$ P_x $; (b) 自旋极化率$ \langle\sigma_z\rangle $; (c)能量E, 随拉比频率Ω的变化行为. (a)中插图表示各物相中典型密度分布, 其中蓝色实线、红色虚线分别表示自旋向上和自旋向下组分的密度分布. (c)中插图为帮助判断相变类型的能量关于拉比频率的导数$ dE/d\Omega $. 图中竖划线和竖点线分别表示本文理论框架确定的ST-PW和PW-ZM相变点处拉比频率$ 2.08 E_{\rm{r}} $和$ 3.95 E_{\rm{r}} $

    Fig. 1.  (a) The condensate momentum $ P_x $, (b) the spin polarization $ \langle\sigma_z\rangle $, and (c) the energy E in the ST, PW, and ZM phases, as functions of the Rabi frequency Ω in the Raman-type spin-orbit coupled Bose gases. The insets in (a) denote the typical density distribution in respective phases, where the density distributions of the spin-up and spin-down components are indicated by the blue-solid and red-dashed lines, respectively. The insets in (c) denote the derivative of the energy with respect to the Rabi frequency $ dE/d\Omega $ to determine the type of phase transitions. The vertical dashed and dotted lines indicate the critical Rabi frequencies of the ST-PW and PW-ZM phase transitions, respectively, determined by our numerical calculations.

    图 2  条纹相中偶极, 呼吸, 自旋-偶极以及自旋-呼吸四种模式对应观测量的含时演化行为

    Fig. 2.  Time-dependent observables of the dipole, breathing, spin-dipole, and spin-breathing modes in the stripe phase.

    图 3  偶极, 呼吸, 自旋-偶极及自旋-呼吸四种集体激发模式频率$ \omega_{d, b, sd, sb} $与拉比频率Ω的关系

    Fig. 3.  Collective excitation frequencies $ \omega_{d, b, sd, sb} $ of the dipole mode, breathing mode, spin-dipole mode, and spin-breathing mode, as functions of the Rabi frequency Ω.

    图 4  偶极模式(第一行)和呼吸模式(第二行)中的典型密度动力学特征: (a), (c) $ \Omega=1.0 E_r $处的条纹相; (b), (d) $ \Omega=3.0 E_r $处的平面波相. 其中, 三种颜色线分别表示$ 0, T/4, T/2 $三个时间点的密度分布

    Fig. 4.  Typical density evolution of dipole-mode (top panel) and breathing-mode (bottom panel) oscillations: (a), (c) stripe phase at $ \Omega=1.0 E_r $; (b), (d) plane-wave phase at $ \Omega=3.0 E_r $. Here, three colorful lines indicate the density distributions at $ 0 $, $ T/4 $, and $ T/2 $ of one full period T.

    图 5  $ \Omega=1.0 E_r $处条纹相中自旋-偶极振荡动力学. 不同颜色曲线分别表示不同自旋分量的密度分布

    Fig. 5.  Oscillating behavior of the spin-dipole mode in the stripe phase at $ \Omega=1.0 E_r $. Here, the colorful lines indicate the spin-up and spin-down density distributions.

    图 6  $ \Omega=1.0 E_r $处条纹相中自旋-呼吸振荡动力学. 不同颜色曲线分别表示不同自旋分量的密度分布

    Fig. 6.  Oscillating behavior of the spin-breathing mode in the ST phase at $ \Omega=1.0 E_r $. Here, the colorful lines indicate the spin-up and spin-down density distributions.

    图 7  自旋-偶极模式(第一行)和自旋-呼吸模式(第二行)中自旋密度分布$ \delta n(x, t)\equiv n_\uparrow(x, t)-n_\downarrow(x, t) $的t-x平面等高图: (a), (c) $ \Omega=1.0 E_r $处的条纹相; (b), (d) $ \Omega=5.0 E_r $处的零动量相. 其中, (a)—(d)中色条表示范围分别为: [–15, 15], [–0.1, 0.1], [–10, 15], [–0.14, 0]

    Fig. 7.  Contour plots of time-dependent spin density $ \delta n(x, t)\equiv n_\uparrow(x, t)-n_\downarrow(x, t) $ of spin-dipole mode (top panel) and spin-breathing mode (bottom panel) in the t-x plane: (a), (c) stripe phase at $ \Omega=1.0 E_r $; (b), (d) zero-momentum phase at $ \Omega=5.0 E_r $. Color scales: (a): –15 to 15; (b): –0.1 to 0.1; (c): –10 to 15; (d): –0.14 to 0.

    表 1  四种集体激发模式(偶极, 呼吸, 自旋-偶极, 自旋-呼吸)所对应的激发方式以及观测量. 其中, $x_0$和α均为小量以使得系统被微弱地扰动

    Table 1.  Exciting approaches and observables for four collective excitation modes, including dipole mode, breathing mode, spin-dipole mode, and spin-breathing mode. Here, $x_0$ and α are both small enough to perturb the systems slightly.

    集体激发模式 $ V_1(x) $ 物理观测量
    偶极模式 $ \dfrac{1}{2} m\omega_x^{2} (x-x_0)^2 $ $ \left\langle x\right\rangle $
    呼吸模式 $ \dfrac{1}{2} m(1+\alpha )^2\omega_x^{2} x^2 $ $ \left\langle x^2\right\rangle $
    自旋-偶极模式 $ \dfrac{1}{2} m\omega_x^{2} (x-\sigma_{z}x_0)^2 $ $ \left\langle\sigma_{z}x \right\rangle $
    自旋-呼吸模式 $ \dfrac{1}{2} m(1+\sigma_{z} \alpha )^2\omega_x^{2} x^2 $ $ \left\langle\sigma_{z}x^2\right\rangle $
    下载: 导出CSV
  • [1]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [2]

    Dalibard J, Gerbier F, Juzeliūnas G, Öhberg P 2011 Rev. Mod. Phys. 83 1523Google Scholar

    [3]

    Goldman N, Juzeliūnas G, Öhberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401Google Scholar

    [4]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83Google Scholar

    [5]

    Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [6]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [7]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [8]

    Huang L, Meng Z, Wang P, Peng P, Zhang S L, Chen L, Li D, Zhou Q, Zhang J 2016 Nat. Phys. 12 540Google Scholar

    [9]

    Chen H R, Lin K Y, Chen P K, Chiu N C, Wang J B, Chen C A, Huang P, Yip S K, Kawaguchi Y, Lin Y J 2018 Phys. Rev. Lett. 121 113204Google Scholar

    [10]

    Zhang D, Gao T, Zou P, Kong L, Li R, Shen X, Chen X L, Peng S G, Zhan M, Pu H, Jiang K 2019 Phys. Rev. Lett. 122 110402Google Scholar

    [11]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271-276

    [12]

    Galitski V, Spielman I B 2013 Nature 494 49-54

    [13]

    Zhai H 2015 Rep. Prog. Phys. 78 026001Google Scholar

    [14]

    Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403Google Scholar

    [15]

    Ho T L, Zhang S 2011 Phys. Rev. Lett. 107 150403Google Scholar

    [16]

    Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301Google Scholar

    [17]

    Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402Google Scholar

    [18]

    Gong M, Tewari S, Zhang C 2011 Phys. Rev. Lett. 107 195303Google Scholar

    [19]

    Hu H, Jiang L, Liu X J, Pu H 2011 Phys. Rev. Lett. 107 195304Google Scholar

    [20]

    Yu Z Q, Zhai H 2011 Phys. Rev. Lett. 107 195305Google Scholar

    [21]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [22]

    Khamehchi M A, Zhang Y, Hamner C, Busch T, Engels P 2014 Phys. Rev. A 90 063624Google Scholar

    [23]

    Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, Pan J W 2014 Nat. Phys. 10 314-320

    [24]

    Ji S C, Zhang L, Xu X T, Wu Z, Deng Y, Chen S, Pan J W 2015 Phys. Rev. Lett. 114 105301Google Scholar

    [25]

    Zhu Q, Zhang C, Wu B 2012 EPL 100 50003Google Scholar

    [26]

    Zhang Y C, Yu Z Q, Ng T K, Zhang S, Pitaevskii L, Stringari S 2016 Phys. Rev. A 94 033635Google Scholar

    [27]

    Yu Z Q 2017 Phys. Rev. A 95 033618Google Scholar

    [28]

    Chen X L, Wang J, Li Y, Liu X J, Hu H 2018 Phys. Rev. A 98 013614Google Scholar

    [29]

    Chen X L, Liu X J, Hu H 2022 Phys. Rev. A 106 023302Google Scholar

    [30]

    Meng Z, Huang L, Peng P, Li D, Chen L, Xu Y, Zhang C, Wang P, Zhang J 2016 Phys. Rev. Lett. 117 235304Google Scholar

    [31]

    Sun W, Yi C R, Wang B Z, Zhang W W, Sanders B C, Xu X T, Wang Z Y, Schmiedmayer J, Deng Y, Liu X J, Chen S, Pan J W 2018 Phys. Rev. Lett. 121 250403Google Scholar

    [32]

    Zhang J Y, Yi C R, Zhang L, Jiao R H, Shi K Y, Yuan H, Zhang W, Liu X J, Chen S, Pan J W 2023 Phys. Rev. Lett. 130 043201Google Scholar

    [33]

    Martone G I, Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. A 86 063621Google Scholar

    [34]

    Zheng W, Yu Z Q, Cui X, Zhai H 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134007Google Scholar

    [35]

    Chen X L, Liu X J, Hu H 2017 Phys. Rev. A 96 013625Google Scholar

    [36]

    Chen L, Pu H, Yu Z Q, Zhang Y 2017 Phys. Rev. A 95 033616Google Scholar

    [37]

    Rajat, Roy A, Gautam S 2022 Phys. Rev. A 106 013304Google Scholar

    [38]

    Liang J C, Zhang A X, Xue J K 2024 Phys. Rev. A 109 053307Google Scholar

    [39]

    Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F Ç, Jamison A O, Ketterle W 2017 Nature 543 91Google Scholar

    [40]

    Léonard J, Morales A, Zupancic P, Esslinger T, Donner T 2017 Nature 543 87Google Scholar

    [41]

    Geier K T, Martone G I, Hauke P, Stringari S 2021 Phys. Rev. Lett. 127 115301Google Scholar

    [42]

    Geier K T, Martone G I, Hauke P, Ketterle W, Stringari S 2023 Phys. Rev. Lett. 130 156001Google Scholar

    [43]

    Li Y, Martone G I, Stringari S 2012 EPL 99 56008Google Scholar

    [44]

    Sartori A, Marino J, Stringari S, Recati A 2015 New J. Phys. 17 093036Google Scholar

    [45]

    Bienaimé T, Fava E, Colzi G, Mordini C, Serafini S, Qu C, Stringari S, Lamporesi G, Ferrari G 2016 Phys. Rev. A 94 063652Google Scholar

    [46]

    Fava E, Bienaimé T, Mordini C, Colzi G, Qu C, Stringari S, Lamporesi G, Ferrari G 2018 Phys. Rev. Lett. 120 170401Google Scholar

    [47]

    Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463Google Scholar

    [48]

    Menotti C, Stringari S 2002 Phys. Rev. A 66 043610Google Scholar

    [49]

    Pitaevskii L, Stringari S 2016 Bose-Einstein Condensation and Superfluidity, vol. 164 of International Series of Monographs on Physics (Oxford University Press, Oxford), pp 401–424

  • [1] 李瑞, 窦荣龙, 高婷, 李奇楠, 宋超群. ICl+分子离子激发态的包含自旋-轨道耦合效应的理论研究. 物理学报, doi: 10.7498/aps.74.20250510
    [2] 樊景涛, 贾锁堂. 自旋-轨道耦合玻色凝聚体中的自旋频谱动力学响应. 物理学报, doi: 10.7498/aps.74.20241783
    [3] 王欢, 贺夏瑶, 李帅, 刘博. 非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学. 物理学报, doi: 10.7498/aps.72.20222401
    [4] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解. 物理学报, doi: 10.7498/aps.72.20222319
    [5] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质. 物理学报, doi: 10.7498/aps.72.20231076
    [6] 袁家望, 陈立, 张云波. 自旋-轨道耦合玻色爱因斯坦凝聚中多能级绝热消除理论. 物理学报, doi: 10.7498/aps.72.20231052
    [7] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, doi: 10.7498/aps.71.20220697
    [8] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态. 物理学报, doi: 10.7498/aps.69.20200372
    [9] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, doi: 10.7498/aps.68.20182013
    [10] 安子烨, 王旭杰, 苑震生, 包小辉, 潘建伟. 冷原子系综内单集体激发态的相干操纵. 物理学报, doi: 10.7498/aps.67.20181183
    [11] 李吉, 刘伍明. 梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究. 物理学报, doi: 10.7498/aps.67.20180539
    [12] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度. 物理学报, doi: 10.7498/aps.66.220301
    [13] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿. 物理学报, doi: 10.7498/aps.63.110306
    [14] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, doi: 10.7498/aps.62.100306
    [15] 鱼自发, 吴建鹏, 王鹏程, 张娇娇, 唐荣安, 薛具奎. 超流Fermi气体在非简谐势阱中的集体激发. 物理学报, doi: 10.7498/aps.61.010301
    [16] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩. 物理学报, doi: 10.7498/aps.58.3679
    [17] 王志霞, 张喜和, 沈 柯. 玻色-爱因斯坦凝聚中的混沌反控制. 物理学报, doi: 10.7498/aps.57.7586
    [18] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性. 物理学报, doi: 10.7498/aps.57.4700
    [19] 李菊萍, 谭 磊, 臧小飞, 杨 科. 偶极旋量玻色-爱因斯坦凝聚体在外场中的自旋混合动力学. 物理学报, doi: 10.7498/aps.57.7467
    [20] 王冠芳, 刘 红. 扫描磁场中玻色-爱因斯坦凝聚体系的奇异自旋隧穿. 物理学报, doi: 10.7498/aps.57.667
计量
  • 文章访问数:  252
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-30
  • 修回日期:  2025-05-02
  • 上网日期:  2025-05-10

/

返回文章
返回