搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究

李吉 刘伍明

引用本文:
Citation:

梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究

李吉, 刘伍明

Ground state of spin-orbit coupled rotating two-component Bose-Einstein condensate in gradient magnetic field

Li Ji, Liu Wu-Ming
PDF
导出引用
  • 利用准二维Gross-Pitaevskii方程,研究了在梯度磁场中具有自旋-轨道耦合的旋转两分量玻色-爱因斯坦凝聚体的基态结构.探索了自旋-轨道耦合作用和梯度磁场对基态的影响.结果发现,在梯度磁场下,随着自旋-轨道耦合强度增大,基态结构由skyrmion格子逐渐过渡为skyrmion列.对于弱自旋-轨道耦合和小旋转频率情况,增大磁场梯度强度可导致基态由平面波相转变为half-skyrmion;对于强自旋-轨道耦合和大旋转频率情况,梯度磁场可诱导hidden涡旋的产生.梯度磁场、自旋-轨道耦合和旋转作为体系的调控参数,可用于控制不同基态相间的转化.
    Two-component Bose-Einstein condensate offers an ideal platform for investigating many intriguing topological defects due to the interplay between intraspecies and interspecies interactions. The recent realization of spin-orbit coupling in two-component Bose-Einstein condensate, owing to coupling between the spin and the centre-of-mass motion of the atom, provides possibly new opportunities to search for novel quantum states. In particular, the gradient magnetic field in the Bose-Einstein condensate has brought a new way to create topologically nontrivial structures including Dirac monopoles and quantum knots. Previous studies of the gradient magnetic field effect in the Bose-Einstein condensate mainly focused on the three-component case. However, it remains unclear how the gradient magnetic field affects the ground state configuration in the rotating two-component Bose-Einstein condensate with spin-orbit coupling. In this work, by using quasi two-dimensional Gross-Pitaevskii equations, we study the ground state structure of a rotating two-component Bose-Einstein condensate with spin-orbit coupling and gradient magnetic field. We concentrate on the effects of the spin-orbit coupling and the gradient magnetic field on the ground state. The numerical results show that increasing the strength of the spin-orbit coupling can induce a phase transition from skyrmion lattice to skyrmion chain in the presence of the gradient magnetic field. Unlike the study of skyrmion in rotating two-component Bose-Einstein condensate with only spin-orbit coupling, the skyrmion chain can occur under the isotropic spin-orbit coupling when the gradient magnetic field is considered. It is worth noting that the skyrmion chain here is arrayed along the diagonal direction. Next we examine the effect of the gradient magnetic field on spin-orbit coupled two-component Bose-Einstein condensate. For the case of weak spin-orbit coupling and the slow rotation, a phase transition from a single plane-wave to half-skyrmion is found through increasing magnetic field gradient strength. For the case of strong spin-orbit coupling and the fast rotation, the nature of the ground state is shown to support the formation of a hidden vortex as the gradient magnetic field is enhanced. These hidden vortices have no visible cores in density distributions but have phase singularities in phase distributions, which are arrayed along the diagonal direction. This result confirms a new method of creating the hidden vortices in the two-component Bose-Einstein condensate. These topological structures can be detected by using the time-of-flight absorption imaging technique. Our results illustrate that the gradient magnetic field not only provides an opportunity to explore the exotic topological structures in spin-orbit coupled spinor Bose-Einstein condensate, but also is crucial for realizing the phase transitions among different ground states. This work paves the way for the future exploring of topological defect and the corresponding dynamical stability in quantum systems subjected to a gradient magnetic field.
      通信作者: 李吉, liji2015@iphy.ac.cn
    • 基金项目: 国家重点研发计划量子调控与量子信息重点专项(批准号:2016YFA0301500)和国家自然科学基金(批准号:11434015,KZ201610005011)资助的课题.
      Corresponding author: Li Ji, liji2015@iphy.ac.cn
    • Funds: Project supported by the NKRDP, China (Grant No. 2016YFA0301500) and the National Natural Science Foundation of China (Grant Nos. 11434015, KZ201610005011).
    [1]

    Hall D S, Matthews M R, Ensher J R, Wieman C E, Cornell E A 1998 Phys. Rev. Lett. 81 1539

    [2]

    Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E, Cornell E A 1999 Phys. Rev. Lett. 83 2498

    [3]

    Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W, Cornell E A 2001 Phys. Rev. Lett. 86 2926

    [4]

    Kasamatsu K, Tsubota M 2004 Phys. Rev. Lett. 93 100402

    [5]

    Qu C L, Pitaevskii L P, Stringari S 2016 Phys. Rev. Lett. 116 160402

    [6]

    Williams J E, Holland M J 1999 Nature 401 568

    [7]

    hberg P, Santos L 2001 Phys. Rev. Lett. 86 2918

    [8]

    Kasamatsu K, Tsubota M, Ueda M 2004 Phys. Rev. Lett. 93 250406

    [9]

    Schweikhard V, Coddington I, Engels P, Tung S, Cornell E A 2004 Phys. Rev. Lett. 93 210403

    [10]

    Cipriani M, Nitta M 2013 Phys. Rev. Lett. 111 170401

    [11]

    Kasamatsu K, Tsubota M, Ueda M 2003 Phys. Rev. Lett. 91 150406

    [12]

    Battye R A, Cooper N R, Sutcliffe P M 2002 Phys. Rev. Lett. 88 080401

    [13]

    Martikainen J P, Collin A, Suominen K A 2002 Phys. Rev. Lett. 88 090404

    [14]

    Lin Y J, Garca K J, Spielman I B 2011 Nature 471 83

    [15]

    Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, Pan J W 2014 Nature Phys. 10 314

    [16]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J, Pan J W 2016 Science 354 83

    [17]

    Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nature Phys. 12 540

    [18]

    Ruseckas J, Juzelinas G, hberg P, Fleischhauer M 2005 Phys. Rev. Lett. 95 010404

    [19]

    Campbell D L, Juzelinas G, Spielman I B 2011 Phys. Rev. A 84 025602

    [20]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301

    [21]

    Liu X J, Borunda M F, Liu X, Sinova J 2009 Phys. Rev. Lett. 102 046402

    [22]

    Anderson B M, Spielman I B, Juzelinas G 2013 Phys. Rev. Lett. 111 125301

    [23]

    Anderson B M, Juzelinas G, Galitski V M, Spielman I B 2012 Phys. Rev. Lett. 108 235301

    [24]

    Cheuk L M, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein1 M W 2012 Phys. Rev. Lett. 109 095302

    [25]

    Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301

    [26]

    Lan Z H, hberg P 2014 Phys. Rev. A 89 023630

    [27]

    Wang C J, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403

    [28]

    Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401

    [29]

    Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402

    [30]

    Yu Z Q 2013 Phys. Rev. A 87 051606

    [31]

    Bhat I A, Mithun T, Malomed B A, Porsezian K 2015 Phys. Rev. A 92 063606

    [32]

    Li Y, Zhou X F, Wu C J 2016 Phys. Rev. A 93 033628

    [33]

    Kato M, Zhang X F, Saito H 2017 Phys. Rev. A 95 043605

    [34]

    Xu X Q, Han J H 2011 Phys. Rev. Lett. 107 200401

    [35]

    Liu C F, Fan H, Zhang Y C, Wang D S, Liu W M 2012 Phys. Rev. A 86 053616

    [36]

    Zhou X F, Zhou J, Wu C J 2011 Phys. Rev. A 84 063624

    [37]

    Sakaguchi H, Umeda K 2016 J. Phys. Soc. Jpn. 85 064402

    [38]

    Zhang X F, Gao R S, Wang X, Dong R F, Liu T, Zhang S G 2013 Phys. Lett. A 377 1109

    [39]

    Wang X, Tan R B, Du Z J, Zhao W Y, Zhang X F, Zhang S G 2014 Chin. Phys. B 23 070308

    [40]

    Wang H, Wen L H, Yang H, Shi C X, Li J H 2017 J. Phys. B: At. Mol. Opt. Phys. 50 155301

    [41]

    Radić J, Sedrakyan T A, Spielman I B, Galitski V 2011 Phys. Rev. A 84 063604

    [42]

    Fetter A L 2014 Phys. Rev. A 89 023629

    [43]

    Chen G P 2015 Acta Phys. Sin. 64 030302(in Chinese) [陈光平 2015 物理学报 64 030302]

    [44]

    Liu C F, Liu W M 2012 Phys. Rev. A 86 033602

    [45]

    Kennedy C J, Siviloglou G A, Miyake H, Burton W C, Ketterle W 2013 Phys. Rev. Lett. 111 225301

    [46]

    Ray M W, Ruokokoski E, Kandel S, Mttnen M, Hall D S 2014 Nature 505 657

    [47]

    Ray M W, Ruokokoski E, Tiurev K, Mttnen M, Hall D S 2015 Science 348 544

    [48]

    Hall D S, Ray M W, Tiurev K, Ruokokoski E, Gheorghe A H, Mttnen M 2016 Nature Phys. 12 478

    [49]

    Kawaguchi Y, Nitta M, Ueda M 2008 Phys. Rev. Lett. 100 180403

    [50]

    Li J, Yu Y M, Zhuang L, Liu W M 2017 Phys. Rev. A 95 043633

    [51]

    Liu J S, Li J, Liu W M 2017 Acta Phys. Sin. 66 130305(in Chinese) [刘静思, 李吉, 刘伍明 2017 物理学报 66 130305]

    [52]

    Leanhardt A E, Grlitz A, Chikkatur A P, Kielpinski D, Shin Y, Pritchard D E, Ketterle W 2002 Phys. Rev. Lett. 89 190403

    [53]

    Pritchard D E 1983 Phys. Rev. Lett. 51 1336

    [54]

    Leanhardt A E, Shin Y, Kielpinski D, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 140403

    [55]

    Han W, Zhang S Y, Jin J J, Liu W M 2012 Phys. Rev. A 85 043626

    [56]

    Dalfovo F, Stringari S 1996 Phys. Rev. A 53 2477

    [57]

    Zhang X F, Dong R F, Liu T, Liu W M, Zhang S G 2012 Phys. Rev. A 86 063628

    [58]

    Bao W Z, Du Q 2004 SIAM J. Sci. Comput. 25 1674

    [59]

    Wen L H, Xiong H W, Wu B 2010 Phys. Rev. A 82 053627

    [60]

    Mithun T, Porsezian K, Dey B 2014 Phys. Rev. A 89 053625

    [61]

    Ruokokoski E, Huhtamki J A M, Mttnen M 2012 Phys. Rev. A 86 051607

    [62]

    Barnett R, Boyd G R, Galitski V 2012 Phys. Rev. Lett. 109 235308

    [63]

    Chen G J, Chen L, Zhang Y B 2016 New J. Phys. 18 063010

    [64]

    Zhang X F, Zhang P, Chen G P, Dong B, Tan R B, Zhang S G 2015 Acta Phys. Sin. 64 060302(in Chinese) [张晓斐, 张培, 陈光平, 董彪, 谭仁兵, 张首刚 2015 物理学报 64 060302]

    [65]

    Liu C F, Wan W J, Zhang G Y 2013 Acta Phys. Sin. 62 200306(in Chinese) [刘超飞, 万文娟, 张赣源 2013 物理学报 62 200306]

  • [1]

    Hall D S, Matthews M R, Ensher J R, Wieman C E, Cornell E A 1998 Phys. Rev. Lett. 81 1539

    [2]

    Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E, Cornell E A 1999 Phys. Rev. Lett. 83 2498

    [3]

    Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W, Cornell E A 2001 Phys. Rev. Lett. 86 2926

    [4]

    Kasamatsu K, Tsubota M 2004 Phys. Rev. Lett. 93 100402

    [5]

    Qu C L, Pitaevskii L P, Stringari S 2016 Phys. Rev. Lett. 116 160402

    [6]

    Williams J E, Holland M J 1999 Nature 401 568

    [7]

    hberg P, Santos L 2001 Phys. Rev. Lett. 86 2918

    [8]

    Kasamatsu K, Tsubota M, Ueda M 2004 Phys. Rev. Lett. 93 250406

    [9]

    Schweikhard V, Coddington I, Engels P, Tung S, Cornell E A 2004 Phys. Rev. Lett. 93 210403

    [10]

    Cipriani M, Nitta M 2013 Phys. Rev. Lett. 111 170401

    [11]

    Kasamatsu K, Tsubota M, Ueda M 2003 Phys. Rev. Lett. 91 150406

    [12]

    Battye R A, Cooper N R, Sutcliffe P M 2002 Phys. Rev. Lett. 88 080401

    [13]

    Martikainen J P, Collin A, Suominen K A 2002 Phys. Rev. Lett. 88 090404

    [14]

    Lin Y J, Garca K J, Spielman I B 2011 Nature 471 83

    [15]

    Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, Pan J W 2014 Nature Phys. 10 314

    [16]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J, Pan J W 2016 Science 354 83

    [17]

    Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nature Phys. 12 540

    [18]

    Ruseckas J, Juzelinas G, hberg P, Fleischhauer M 2005 Phys. Rev. Lett. 95 010404

    [19]

    Campbell D L, Juzelinas G, Spielman I B 2011 Phys. Rev. A 84 025602

    [20]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301

    [21]

    Liu X J, Borunda M F, Liu X, Sinova J 2009 Phys. Rev. Lett. 102 046402

    [22]

    Anderson B M, Spielman I B, Juzelinas G 2013 Phys. Rev. Lett. 111 125301

    [23]

    Anderson B M, Juzelinas G, Galitski V M, Spielman I B 2012 Phys. Rev. Lett. 108 235301

    [24]

    Cheuk L M, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein1 M W 2012 Phys. Rev. Lett. 109 095302

    [25]

    Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301

    [26]

    Lan Z H, hberg P 2014 Phys. Rev. A 89 023630

    [27]

    Wang C J, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403

    [28]

    Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401

    [29]

    Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402

    [30]

    Yu Z Q 2013 Phys. Rev. A 87 051606

    [31]

    Bhat I A, Mithun T, Malomed B A, Porsezian K 2015 Phys. Rev. A 92 063606

    [32]

    Li Y, Zhou X F, Wu C J 2016 Phys. Rev. A 93 033628

    [33]

    Kato M, Zhang X F, Saito H 2017 Phys. Rev. A 95 043605

    [34]

    Xu X Q, Han J H 2011 Phys. Rev. Lett. 107 200401

    [35]

    Liu C F, Fan H, Zhang Y C, Wang D S, Liu W M 2012 Phys. Rev. A 86 053616

    [36]

    Zhou X F, Zhou J, Wu C J 2011 Phys. Rev. A 84 063624

    [37]

    Sakaguchi H, Umeda K 2016 J. Phys. Soc. Jpn. 85 064402

    [38]

    Zhang X F, Gao R S, Wang X, Dong R F, Liu T, Zhang S G 2013 Phys. Lett. A 377 1109

    [39]

    Wang X, Tan R B, Du Z J, Zhao W Y, Zhang X F, Zhang S G 2014 Chin. Phys. B 23 070308

    [40]

    Wang H, Wen L H, Yang H, Shi C X, Li J H 2017 J. Phys. B: At. Mol. Opt. Phys. 50 155301

    [41]

    Radić J, Sedrakyan T A, Spielman I B, Galitski V 2011 Phys. Rev. A 84 063604

    [42]

    Fetter A L 2014 Phys. Rev. A 89 023629

    [43]

    Chen G P 2015 Acta Phys. Sin. 64 030302(in Chinese) [陈光平 2015 物理学报 64 030302]

    [44]

    Liu C F, Liu W M 2012 Phys. Rev. A 86 033602

    [45]

    Kennedy C J, Siviloglou G A, Miyake H, Burton W C, Ketterle W 2013 Phys. Rev. Lett. 111 225301

    [46]

    Ray M W, Ruokokoski E, Kandel S, Mttnen M, Hall D S 2014 Nature 505 657

    [47]

    Ray M W, Ruokokoski E, Tiurev K, Mttnen M, Hall D S 2015 Science 348 544

    [48]

    Hall D S, Ray M W, Tiurev K, Ruokokoski E, Gheorghe A H, Mttnen M 2016 Nature Phys. 12 478

    [49]

    Kawaguchi Y, Nitta M, Ueda M 2008 Phys. Rev. Lett. 100 180403

    [50]

    Li J, Yu Y M, Zhuang L, Liu W M 2017 Phys. Rev. A 95 043633

    [51]

    Liu J S, Li J, Liu W M 2017 Acta Phys. Sin. 66 130305(in Chinese) [刘静思, 李吉, 刘伍明 2017 物理学报 66 130305]

    [52]

    Leanhardt A E, Grlitz A, Chikkatur A P, Kielpinski D, Shin Y, Pritchard D E, Ketterle W 2002 Phys. Rev. Lett. 89 190403

    [53]

    Pritchard D E 1983 Phys. Rev. Lett. 51 1336

    [54]

    Leanhardt A E, Shin Y, Kielpinski D, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 140403

    [55]

    Han W, Zhang S Y, Jin J J, Liu W M 2012 Phys. Rev. A 85 043626

    [56]

    Dalfovo F, Stringari S 1996 Phys. Rev. A 53 2477

    [57]

    Zhang X F, Dong R F, Liu T, Liu W M, Zhang S G 2012 Phys. Rev. A 86 063628

    [58]

    Bao W Z, Du Q 2004 SIAM J. Sci. Comput. 25 1674

    [59]

    Wen L H, Xiong H W, Wu B 2010 Phys. Rev. A 82 053627

    [60]

    Mithun T, Porsezian K, Dey B 2014 Phys. Rev. A 89 053625

    [61]

    Ruokokoski E, Huhtamki J A M, Mttnen M 2012 Phys. Rev. A 86 051607

    [62]

    Barnett R, Boyd G R, Galitski V 2012 Phys. Rev. Lett. 109 235308

    [63]

    Chen G J, Chen L, Zhang Y B 2016 New J. Phys. 18 063010

    [64]

    Zhang X F, Zhang P, Chen G P, Dong B, Tan R B, Zhang S G 2015 Acta Phys. Sin. 64 060302(in Chinese) [张晓斐, 张培, 陈光平, 董彪, 谭仁兵, 张首刚 2015 物理学报 64 060302]

    [65]

    Liu C F, Wan W J, Zhang G Y 2013 Acta Phys. Sin. 62 200306(in Chinese) [刘超飞, 万文娟, 张赣源 2013 物理学报 62 200306]

  • [1] 代雪峰, 贡同. 铁磁性电极条件下T型双量子点结构中马约拉纳束缚态的解耦现象. 物理学报, 2024, 73(5): 057301. doi: 10.7498/aps.73.20231434
    [2] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [3] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [4] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质. 物理学报, 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [5] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [6] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计. 物理学报, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [7] 朱进进, 吴雨祥, 邵晓鹏. 基于利萨茹椭圆拟合的两步相移轮廓技术. 物理学报, 2021, 70(17): 170602. doi: 10.7498/aps.70.20210644
    [8] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性. 物理学报, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [9] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [10] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [11] 王朝辉, 李勇祥, 朱帅. 基于超表面的旋向选择吸波体. 物理学报, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [12] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [13] 马堃, 陈展斌, 黄时中. 等离子体屏蔽效应对Ar16+基态和激发态能级的影响. 物理学报, 2019, 68(2): 023102. doi: 10.7498/aps.68.20181915
    [14] 武瑞琪, 郭迎春, 王兵兵. SF6分子最高占据轨道对称性的判断. 物理学报, 2019, 68(8): 080201. doi: 10.7498/aps.68.20182231
计量
  • 文章访问数:  6528
  • PDF下载量:  363
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-26
  • 修回日期:  2018-04-09
  • 刊出日期:  2018-06-05

/

返回文章
返回