搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分段Filippov系统的簇发振荡及擦边运动机理

张正娣 刘亚楠 李静 毕勤胜

引用本文:
Citation:

分段Filippov系统的簇发振荡及擦边运动机理

张正娣, 刘亚楠, 李静, 毕勤胜

Bursting oscillations and mechanism of sliding movement in piecewise Filippov system

Zhang Zheng-Di, Liu Ya-Nan, Li Jing, Bi Qin-Sheng
PDF
导出引用
  • 本文旨在揭示非光滑Filippov系统中由频域上不同尺度耦合导致的簇发振荡行为及其产生机理.以经典的周期激励Duffing振子为例,通过引入对状态变量的分段控制及适当选取参数,使得激励频率与系统固有频率之间存在量级差距,建立了频域两尺度耦合的Filippov系统.当激励频率远小于系统的固有频率时,可以将整个激励项视为慢变参数或慢变子系统,从而得到广义自治快子系统.分析了由非光滑分界面划分的不同区域中各快子系统的平衡点及其分岔特性随慢变参数变化的演化过程.考察了两种典型参数条件下系统的振荡行为及其动力学特性,指出参数变化不仅会引起其相应子系统平衡曲线及其分岔特性的改变,也会导致不同模式的簇发振荡.同时,轨迹穿越非光滑分界面时会产生不同的动力学行为,特别是在一定参数条件下,由于运动轨迹受不同子系统的交替控制,存在着擦边运动现象,从而导致特殊形式的非光滑簇发振荡.基于转换相图及各区域中快子系统的平衡曲线及其分岔特性,揭示了非光滑分界面对系统簇发振荡的影响规律及不同簇发振荡的分岔机理.
    Since the wide applications in science and engineering, the dynamics of non-smooth system has become one of the key research subjects. Furthermore, the interaction between different scales may result in special movement which can be usually described by the combination of large-amplitude oscillation and small-amplitude one. The influence of multiple scale on the dynamics of non-smooth system has received much attention recently. In this work, we try to explore the bursting oscillations and the mechanism of non-smooth Filippov system coupled by different scales in the frequency domain. Taking the typical periodically excited Duffing's oscillator for example a Filippov system coupled by two scales in the frequency domain is established when the difference in order between the excited frequency and the system natural frequency is obtained by introducing the piecewise control into the state variable and choosing suitable parameters. For the case in which the exciting frequency is far less than the natural frequency, the whole exciting term can be considered as a slow-varying parameter, also called slow subsystem, which leads to a generalized autonomous system, i.e., the fast subsystem. The equilibrium branches and the bifurcations of the fast subsystem along with the variation of the slow-varying parameter in different regions divided according to non-smooth boundary, can be derived. Two typical cases are taken into consideration, in which different distributions of the equilibrium branches and the relevant bifurcations of the fast subsystem may exist. It is pointed out that the variations of the parameters may influence not only the properties of the equilibrium branches, but also the structures of the bursting attractors. Furthermore, since the governing equation alternates between two subsystems located in different regions when the trajectory passes across the non-smooth boundary, the sliding movement along the non-smooth boundary of the trajectory can be observed under the condition of certain parameters. By employing the transformed phase portrait which describes the relationship between the state variable and the slow-varying parameter, the mechanisms of different bursting oscillations and sliding movements are investigated. The results show that bursting oscillations may exist in a non-smooth Filippov system coupled by two scales in the frequency domain. The alternations of the governing equation between different subsystems located in the two neighboring regions along the non-smooth boundary may result in a sliding movement of the trajectory along the non-smooth boundary.
      通信作者: 毕勤胜, qbi@ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11472116,11472115)和国家自然科学基金重点项目(批准号:11632008)资助的课题.
      Corresponding author: Bi Qin-Sheng, qbi@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472116, 11472115) and the Key Program of the National Natural Science Foundation of China (Grant No. 11632008).
    [1]

    Duan C, Singh R 2005 J. Sound Vib. 285 1223

    [2]

    Siefert A, Henkel F O 2014 Nucl. Eng. Des. 269 130

    [3]

    Chen Z Y, Wang Y M 2016 J. Henan Sci. Univ. 37 87(in Chinese) [陈章耀, 王亚茗 2016 河南科技大学学报 37 87]

    [4]

    Galvanetto U 2001 J. Sound Vib. 248 653

    [5]

    Carmona V, Fernndez-Garca S, Freire E 2012 Physica D 241 623

    [6]

    Dercole F, Gragnani A, Rinaldi S 2007 Theor. Popul. Biol. 72 197

    [7]

    Zhang S J, Zhou L B, Lu Q S 2007 J. Mech. 39 132(in Chinese) [张思进, 周利彪, 陆启韶 2007 力学学报 39 132]

    [8]

    Zhang X F, Chen X K, Bi Q S 2012 J. Mech. 44 576(in Chinese) [张晓芳, 陈小可, 毕勤胜 2012 力学学报 44 576]

    [9]

    Zhou Z, Tan Y, Xie Y 2016 Mech. Syst. Sig. Process. 83 439

    [10]

    Kahan S, Sicardi-Schifino A C 1999 Physica A 262 144

    [11]

    Baptista M S 1999 Physica D 132 325

    [12]

    Leine R I 2006 Physica D 223 121

    [13]

    Leine R I, Glocker C 2003 Eur. J. Mech. A: Solids 22 193

    [14]

    Leine R I, Campen D H V 2006 Eur. J. Mech. 25 595

    [15]

    Izhikevich E M, Desai N S, Walcott E C 2003 Trends Neurosci. 26 161

    [16]

    Vanag V K, Epstein I R 2011 Phys. Rev. E 84 066209

    [17]

    Jia Z, Leimkuhler B 2003 Future Gener. Comp. Syst. 19 415

    [18]

    Yu B S, Jin D P, Pang Z J 2014 Science China E 8 858(in Chinese) [余本嵩, 金栋平, 庞兆君 2014 中国科学 8 858]

    [19]

    Yang S C, Hong H P 2016 Eng. Struct. 123 490

    [20]

    Ji Y, Bi Q S 2010 Phys. Lett. A 374 1434

    [21]

    Cardin P T, de Moraes J R, da Silva P R 2015 J. Math. Anal. Appl. 423 1166

    [22]

    Hodgkin A L, Huxley A F 1990 Bull. Math. Biol. 52 25

    [23]

    Ferrari F A S, Viana R L, Lopes S R, Stoop R 2015 Neural Networks 66 107

    [24]

    Huang X G, Xu J X, He D H, Xia J L, L Z J 1999 Acta Phys. Sin. 48 1810(in Chinese) [黄显高, 徐健学, 何岱海, 夏军利, 吕泽均 1999 物理学报 48 1810]

    [25]

    Izhikevich E M 2000 Int. J. Bifurcation Chaos 10 1171

    [26]

    Shimizu K, Saito Y, Sekikawa M 2015 Physica D 241 1518

    [27]

    Han X J, Bi Q S 2012 Int. J. Non Linear Mech. 89 69

    [28]

    Wu T Y, Chen X K, Zhang Z D, Zhang X F, Bi Q S 2017 Acta Phys. Sin. 66 35(in Chinese) [吴天一, 陈小可, 张正娣, 张晓芳, 毕勤胜 2017 物理学报 66 35]

    [29]

    Tana X, Qinc W, Liud X, Jin Y, Jiangb S 2016 J. Nonlinear Sci. Appl. 9 3948

    [30]

    Premraj D, Suresh K, Palanivel J 2017 Commun. Nonlinear Sci. 50 103

    [31]

    Yang X F, Zhang Z D, Li S L 2017 J. Henan Sci. Univ. 38 65(in Chinese) [杨秀芳, 张正娣, 李绍龙 2017 河南科技大学学报 38 65]

    [32]

    Yang X F 2017 M. S. Dissertation (Zhenjiang: Jiangsu University) (in Chinese) [杨秀芳 2017 硕士学位论文(镇江: 江苏大学)]

  • [1]

    Duan C, Singh R 2005 J. Sound Vib. 285 1223

    [2]

    Siefert A, Henkel F O 2014 Nucl. Eng. Des. 269 130

    [3]

    Chen Z Y, Wang Y M 2016 J. Henan Sci. Univ. 37 87(in Chinese) [陈章耀, 王亚茗 2016 河南科技大学学报 37 87]

    [4]

    Galvanetto U 2001 J. Sound Vib. 248 653

    [5]

    Carmona V, Fernndez-Garca S, Freire E 2012 Physica D 241 623

    [6]

    Dercole F, Gragnani A, Rinaldi S 2007 Theor. Popul. Biol. 72 197

    [7]

    Zhang S J, Zhou L B, Lu Q S 2007 J. Mech. 39 132(in Chinese) [张思进, 周利彪, 陆启韶 2007 力学学报 39 132]

    [8]

    Zhang X F, Chen X K, Bi Q S 2012 J. Mech. 44 576(in Chinese) [张晓芳, 陈小可, 毕勤胜 2012 力学学报 44 576]

    [9]

    Zhou Z, Tan Y, Xie Y 2016 Mech. Syst. Sig. Process. 83 439

    [10]

    Kahan S, Sicardi-Schifino A C 1999 Physica A 262 144

    [11]

    Baptista M S 1999 Physica D 132 325

    [12]

    Leine R I 2006 Physica D 223 121

    [13]

    Leine R I, Glocker C 2003 Eur. J. Mech. A: Solids 22 193

    [14]

    Leine R I, Campen D H V 2006 Eur. J. Mech. 25 595

    [15]

    Izhikevich E M, Desai N S, Walcott E C 2003 Trends Neurosci. 26 161

    [16]

    Vanag V K, Epstein I R 2011 Phys. Rev. E 84 066209

    [17]

    Jia Z, Leimkuhler B 2003 Future Gener. Comp. Syst. 19 415

    [18]

    Yu B S, Jin D P, Pang Z J 2014 Science China E 8 858(in Chinese) [余本嵩, 金栋平, 庞兆君 2014 中国科学 8 858]

    [19]

    Yang S C, Hong H P 2016 Eng. Struct. 123 490

    [20]

    Ji Y, Bi Q S 2010 Phys. Lett. A 374 1434

    [21]

    Cardin P T, de Moraes J R, da Silva P R 2015 J. Math. Anal. Appl. 423 1166

    [22]

    Hodgkin A L, Huxley A F 1990 Bull. Math. Biol. 52 25

    [23]

    Ferrari F A S, Viana R L, Lopes S R, Stoop R 2015 Neural Networks 66 107

    [24]

    Huang X G, Xu J X, He D H, Xia J L, L Z J 1999 Acta Phys. Sin. 48 1810(in Chinese) [黄显高, 徐健学, 何岱海, 夏军利, 吕泽均 1999 物理学报 48 1810]

    [25]

    Izhikevich E M 2000 Int. J. Bifurcation Chaos 10 1171

    [26]

    Shimizu K, Saito Y, Sekikawa M 2015 Physica D 241 1518

    [27]

    Han X J, Bi Q S 2012 Int. J. Non Linear Mech. 89 69

    [28]

    Wu T Y, Chen X K, Zhang Z D, Zhang X F, Bi Q S 2017 Acta Phys. Sin. 66 35(in Chinese) [吴天一, 陈小可, 张正娣, 张晓芳, 毕勤胜 2017 物理学报 66 35]

    [29]

    Tana X, Qinc W, Liud X, Jin Y, Jiangb S 2016 J. Nonlinear Sci. Appl. 9 3948

    [30]

    Premraj D, Suresh K, Palanivel J 2017 Commun. Nonlinear Sci. 50 103

    [31]

    Yang X F, Zhang Z D, Li S L 2017 J. Henan Sci. Univ. 38 65(in Chinese) [杨秀芳, 张正娣, 李绍龙 2017 河南科技大学学报 38 65]

    [32]

    Yang X F 2017 M. S. Dissertation (Zhenjiang: Jiangsu University) (in Chinese) [杨秀芳 2017 硕士学位论文(镇江: 江苏大学)]

  • [1] 宋锦, 魏梦可, 姜文安, 张晓芳, 韩修静, 毕勤胜. 经由脉冲式爆炸连接的复合式张弛振荡. 物理学报, 2020, 69(7): 070501. doi: 10.7498/aps.69.20191812
    [2] 张绍华, 王聪, 张宏立. 永磁同步电动机的簇发振荡分析及协同控制. 物理学报, 2020, 69(21): 210501. doi: 10.7498/aps.69.20200413
    [3] 张正娣, 刘杨, 张苏珍, 毕勤胜. 余维-1非光滑分岔下的簇发振荡及其机理. 物理学报, 2017, 66(2): 020501. doi: 10.7498/aps.66.020501
    [4] 吴天一, 陈小可, 张正娣, 张晓芳, 毕勤胜. 非对称型簇发振荡吸引子结构及其机理分析. 物理学报, 2017, 66(11): 110501. doi: 10.7498/aps.66.110501
    [5] 邢雅清, 陈小可, 张正娣, 毕勤胜. 多平衡态下簇发振荡产生机理及吸引子结构分析. 物理学报, 2016, 65(9): 090501. doi: 10.7498/aps.65.090501
    [6] 高超, 毕勤胜, 张正娣. 一个跃变电路切换系统的振荡行为及分岔机理分析. 物理学报, 2013, 62(2): 020504. doi: 10.7498/aps.62.020504
    [7] 余跃, 张春, 韩修静, 姜海波, 毕勤胜. 周期切换下Chen系统的振荡行为与非光滑分岔分析. 物理学报, 2013, 62(2): 020508. doi: 10.7498/aps.62.020508
    [8] 吴立锋, 关永, 刘勇. 分段线性电路切换系统的复杂行为及非光滑分岔机理. 物理学报, 2013, 62(11): 110510. doi: 10.7498/aps.62.110510
    [9] 李旭, 张正娣, 毕勤胜. 两时间尺度下非光滑广义蔡氏电路系统的簇发振荡机理. 物理学报, 2013, 62(22): 220502. doi: 10.7498/aps.62.220502
    [10] 姜海波, 李涛, 曾小亮, 张丽萍. 周期脉冲作用下Logistic映射的复杂动力学行为及其分岔分析. 物理学报, 2013, 62(12): 120508. doi: 10.7498/aps.62.120508
    [11] 余跃, 张春, 韩修静, 毕勤胜. 两子系统在周期切换连接下的振荡行为及其机理. 物理学报, 2012, 61(20): 200507. doi: 10.7498/aps.61.200507
    [12] 姜海波, 张丽萍, 陈章耀, 毕勤胜. 脉冲作用下Chen系统的非光滑分岔分析. 物理学报, 2012, 61(8): 080505. doi: 10.7498/aps.61.080505
    [13] 李向红, 毕勤胜. 铂族金属氧化过程中的簇发振荡及其诱发机理. 物理学报, 2012, 61(2): 020504. doi: 10.7498/aps.61.020504
    [14] 吴天一, 张正娣, 毕勤胜. 切换电路系统的振荡行为及其非光滑分岔机理. 物理学报, 2012, 61(7): 070502. doi: 10.7498/aps.61.070502
    [15] 李绍龙, 张正娣, 吴天一, 毕勤胜. 广义BVP电路系统的振荡行为及其非光滑分岔机理. 物理学报, 2012, 61(6): 060504. doi: 10.7498/aps.61.060504
    [16] 谢帆, 杨汝, 张波. 电流反馈型Buck变换器二维分段光滑系统边界碰撞和分岔研究. 物理学报, 2010, 59(12): 8393-8406. doi: 10.7498/aps.59.8393
    [17] 陈章耀, 张晓芳, 毕勤胜. 广义Chua电路簇发现象及其分岔机理. 物理学报, 2010, 59(4): 2326-2333. doi: 10.7498/aps.59.2326
    [18] 季颖, 毕勤胜. 分段线性混沌电路的非光滑分岔分析. 物理学报, 2010, 59(11): 7612-7617. doi: 10.7498/aps.59.7612
    [19] 李 明, 马西奎, 戴 栋, 张 浩. 基于符号序列描述的一类分段光滑系统中分岔现象与混沌分析. 物理学报, 2005, 54(3): 1084-1091. doi: 10.7498/aps.54.1084
    [20] 戴 栋, 马西奎, 李小峰. 一类具有两个边界的分段光滑系统中边界碰撞分岔现象及混沌. 物理学报, 2003, 52(11): 2729-2736. doi: 10.7498/aps.52.2729
计量
  • 文章访问数:  3543
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-10
  • 修回日期:  2018-01-13
  • 刊出日期:  2018-06-05

分段Filippov系统的簇发振荡及擦边运动机理

  • 1. 江苏大学理学院, 镇江 212013;
  • 2. 江苏大学土木工程与力学学院, 镇江 212013
  • 通信作者: 毕勤胜, qbi@ujs.edu.cn
    基金项目: 国家自然科学基金(批准号:11472116,11472115)和国家自然科学基金重点项目(批准号:11632008)资助的课题.

摘要: 本文旨在揭示非光滑Filippov系统中由频域上不同尺度耦合导致的簇发振荡行为及其产生机理.以经典的周期激励Duffing振子为例,通过引入对状态变量的分段控制及适当选取参数,使得激励频率与系统固有频率之间存在量级差距,建立了频域两尺度耦合的Filippov系统.当激励频率远小于系统的固有频率时,可以将整个激励项视为慢变参数或慢变子系统,从而得到广义自治快子系统.分析了由非光滑分界面划分的不同区域中各快子系统的平衡点及其分岔特性随慢变参数变化的演化过程.考察了两种典型参数条件下系统的振荡行为及其动力学特性,指出参数变化不仅会引起其相应子系统平衡曲线及其分岔特性的改变,也会导致不同模式的簇发振荡.同时,轨迹穿越非光滑分界面时会产生不同的动力学行为,特别是在一定参数条件下,由于运动轨迹受不同子系统的交替控制,存在着擦边运动现象,从而导致特殊形式的非光滑簇发振荡.基于转换相图及各区域中快子系统的平衡曲线及其分岔特性,揭示了非光滑分界面对系统簇发振荡的影响规律及不同簇发振荡的分岔机理.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回