搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

切换电路系统的振荡行为及其非光滑分岔机理

吴天一 张正娣 毕勤胜

引用本文:
Citation:

切换电路系统的振荡行为及其非光滑分岔机理

吴天一, 张正娣, 毕勤胜

The oscillations of a switching electrical circuit and the mechanism of non-smooth bifurcations

Wu Tian-Yi, Zhang Zheng-Di, Bi Qin-Sheng
PDF
导出引用
  • 探讨了周期时间开关及控制阈值下在两个Rayleigh型子系统之间切换的电路系统随参数变化的复杂动力学演化过程, 通过对子系统平衡点的分析, 给出了参数空间中Fold分岔和Hopf分岔的条件, 考察了切换面处广义Jacobian矩阵特征值随辅助参数变化的分布情况, 得到了切换面处系统可能存在的各种分岔行为, 进而讨论了系统不同行为的产生机理, 指出系统的相轨迹存在分别由周期开关和控制阈值决定的两类不同的分界点, 而系统轨迹与非光滑分界面的多次碰撞将导致系统由周期倍化分岔导致混沌振荡.
    The complicated dynamical evolution of a circuit system composed of two Rayleigh-types subsystems, which are switched by a periodic switch and a threshold controller, is investigated. Through the analysis of the subsystem equilibrium points, the conditions for Fold bifurcation and Hopf bifurcation in the parameter space are given respectively. The distribution of the generalized Jacobian eigenvalues varying with auxiliary parameter at the switching boundary is presented. Then the possible bifurcation behaviors of the system at the switching boundary are obtained. The mechanisms of the different behaviors of the system are discussed. It is pointed that the trajectories of the system have two kinds of turning points, which are determined by the periodic switch and the threshold controller respectively. Meanwhile, the multiple collisions between the trajectories and the non-smooth boundary may lead the system to change from chaos to period-adding bifurcation.
    • 基金项目: 国家自然科学基金(批准号:20976075,10972091)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 20976075,10972091).
    [1]

    Rajasekar S, Parthasarathy S, Lakshmanan M 1992 Chaos, Solitons Fractals 2 271

    [2]
    [3]

    Zhang W, Yu P 2000 J. Sound and Vibration 231 145

    [4]
    [5]

    Bogarcz R, Ryczek B 1997 Eng. Trans 45 194

    [6]
    [7]
    [8]

    Jing Z J, Yang Z Y, Jiang T 2006 Chaos, Solitons and Fractals 27722

    [9]
    [10]

    Cveticanin L, Abd El-Latif GM, El-Naggar AM, Ismail GM2008Journal of Sound and Vibration 318 580

    [11]

    Nayfeh A H, Mook D T 1979 Nonlinear Oscillators (New York:Wiley)

    [12]
    [13]
    [14]

    Bogoliubov N N, Mitropolski Y S 1961 Asymptotic Methods in theTheory of Non-linear Oscillations (New York: Gordon Breach)

    [15]
    [16]

    Nayfeh A H 1973 Perturbation Method (New York: Wiley)

    [17]

    Margallo J G, Bejarano J D 1992 Journal of Sound and Vibration156 283

    [18]
    [19]
    [20]

    Liu B W 2009 Nonlinear Analysis: Real World Applications 102850

    [21]

    Brogliato B 1999 Nonsmooth Mechanics-Models (New York:Springer-Verlag)

    [22]
    [23]

    Luo G W, Xie J H 2001 Physica D 148 183

    [24]
    [25]

    Luo G W, Xie J H 2002 International Journal of Nonlinear Mechanics37 19

    [26]
    [27]
    [28]

    Contou-Carrere M N, Daoutidis P 2005 Transactions on AutomaticControl 50 1831

    [29]

    Zhusubaliyev Z H, Mosekilde E 2003 Bifurcation and Chaos inPiecewise-Smooth Dynamical Systems (Singapore: World Scientific)

    [30]
    [31]
    [32]

    Zhusubaliyev Z H, Mosekilde E 2008 Physics Letters A 372 2237

    [33]
    [34]

    Leine R I 2006 Physica D 223 121

    [35]
    [36]

    Chua L O, Lin G N 1990 Transations on Circuits and Systems 37885

    [37]

    Galvenetto U 2001 Journal of Sound and Vibration 248 653

    [38]
    [39]

    Xu H D 2005 Ph.D Dissertation (Chengdu: Southwest JiaotongUniversity) (in Chinese)[徐慧东 2005 博士学位论文(成都:西南交通大学)]

    [40]
    [41]

    Chen Z Y, Zhang X F, Bi Q S 2010 Acta Phys. Sin. 59 2327[陈章耀, 张晓芳, 毕勤胜 2010 物理学报 59 2326]

    [42]
    [43]

    Gonzalo M R, Jason A C Gallas 2010 Physics Letters A 375(2)143

    [44]
    [45]

    Feng C W, Cai L, Zhang L S, Yang X K, Zhao X H 2010 ActaPhys. Sin. 59 8426 [冯朝文, 蔡理, 张立森, 杨晓阔, 赵晓辉 2010 物理学报 59 8426]

    [46]
    [47]

    Kousaka T, Ueta T, Ma Y, Hiroshi Kawakami 2006 Chaos, Solitons Fractals 27 1019

  • [1]

    Rajasekar S, Parthasarathy S, Lakshmanan M 1992 Chaos, Solitons Fractals 2 271

    [2]
    [3]

    Zhang W, Yu P 2000 J. Sound and Vibration 231 145

    [4]
    [5]

    Bogarcz R, Ryczek B 1997 Eng. Trans 45 194

    [6]
    [7]
    [8]

    Jing Z J, Yang Z Y, Jiang T 2006 Chaos, Solitons and Fractals 27722

    [9]
    [10]

    Cveticanin L, Abd El-Latif GM, El-Naggar AM, Ismail GM2008Journal of Sound and Vibration 318 580

    [11]

    Nayfeh A H, Mook D T 1979 Nonlinear Oscillators (New York:Wiley)

    [12]
    [13]
    [14]

    Bogoliubov N N, Mitropolski Y S 1961 Asymptotic Methods in theTheory of Non-linear Oscillations (New York: Gordon Breach)

    [15]
    [16]

    Nayfeh A H 1973 Perturbation Method (New York: Wiley)

    [17]

    Margallo J G, Bejarano J D 1992 Journal of Sound and Vibration156 283

    [18]
    [19]
    [20]

    Liu B W 2009 Nonlinear Analysis: Real World Applications 102850

    [21]

    Brogliato B 1999 Nonsmooth Mechanics-Models (New York:Springer-Verlag)

    [22]
    [23]

    Luo G W, Xie J H 2001 Physica D 148 183

    [24]
    [25]

    Luo G W, Xie J H 2002 International Journal of Nonlinear Mechanics37 19

    [26]
    [27]
    [28]

    Contou-Carrere M N, Daoutidis P 2005 Transactions on AutomaticControl 50 1831

    [29]

    Zhusubaliyev Z H, Mosekilde E 2003 Bifurcation and Chaos inPiecewise-Smooth Dynamical Systems (Singapore: World Scientific)

    [30]
    [31]
    [32]

    Zhusubaliyev Z H, Mosekilde E 2008 Physics Letters A 372 2237

    [33]
    [34]

    Leine R I 2006 Physica D 223 121

    [35]
    [36]

    Chua L O, Lin G N 1990 Transations on Circuits and Systems 37885

    [37]

    Galvenetto U 2001 Journal of Sound and Vibration 248 653

    [38]
    [39]

    Xu H D 2005 Ph.D Dissertation (Chengdu: Southwest JiaotongUniversity) (in Chinese)[徐慧东 2005 博士学位论文(成都:西南交通大学)]

    [40]
    [41]

    Chen Z Y, Zhang X F, Bi Q S 2010 Acta Phys. Sin. 59 2327[陈章耀, 张晓芳, 毕勤胜 2010 物理学报 59 2326]

    [42]
    [43]

    Gonzalo M R, Jason A C Gallas 2010 Physics Letters A 375(2)143

    [44]
    [45]

    Feng C W, Cai L, Zhang L S, Yang X K, Zhao X H 2010 ActaPhys. Sin. 59 8426 [冯朝文, 蔡理, 张立森, 杨晓阔, 赵晓辉 2010 物理学报 59 8426]

    [46]
    [47]

    Kousaka T, Ueta T, Ma Y, Hiroshi Kawakami 2006 Chaos, Solitons Fractals 27 1019

  • [1] 曾尖尖, 鲍丽娟. 含时变切换的广义时滞反馈控制镇定多旋转周期轨线. 物理学报, 2023, 72(8): 080502. doi: 10.7498/aps.72.20222294
    [2] 张正娣, 刘杨, 张苏珍, 毕勤胜. 余维-1非光滑分岔下的簇发振荡及其机理. 物理学报, 2017, 66(2): 020501. doi: 10.7498/aps.66.020501
    [3] 张耀利, 吴保卫, 王月娥, 韩晓霞. 切换奇异系统的有限时间稳定. 物理学报, 2014, 63(17): 170205. doi: 10.7498/aps.63.170205
    [4] 曹伟, 孙明. 时变离散切换系统的迭代学习控制. 物理学报, 2014, 63(2): 020201. doi: 10.7498/aps.63.020201
    [5] 岳晓乐, 徐伟, 张莹, 王亮. 加性和乘性泊松白噪声联合激励下光滑非连续振子的随机响应. 物理学报, 2014, 63(6): 060502. doi: 10.7498/aps.63.060502
    [6] 陈章耀, 雪增红, 张春, 季颖, 毕勤胜. 周期切换下Rayleigh振子的振荡行为及机理. 物理学报, 2014, 63(1): 010504. doi: 10.7498/aps.63.010504
    [7] 张晓芳, 陈小可, 毕勤胜. 多分界面下四维蔡氏电路的张弛簇发及其机制研究. 物理学报, 2013, 62(1): 010502. doi: 10.7498/aps.62.010502
    [8] 吴立锋, 关永, 刘勇. 分段线性电路切换系统的复杂行为及非光滑分岔机理. 物理学报, 2013, 62(11): 110510. doi: 10.7498/aps.62.110510
    [9] 余跃, 张春, 韩修静, 姜海波, 毕勤胜. 周期切换下Chen系统的振荡行为与非光滑分岔分析. 物理学报, 2013, 62(2): 020508. doi: 10.7498/aps.62.020508
    [10] 马新东, 毕勤胜. 切换电路系统的复杂行为及其机理. 物理学报, 2012, 61(24): 240506. doi: 10.7498/aps.61.240506
    [11] 朱思峰, 刘芳, 柴争义, 戚玉涛, 吴建设. 简谐振子免疫优化算法求解异构无线网络垂直切换判决问题. 物理学报, 2012, 61(9): 096401. doi: 10.7498/aps.61.096401
    [12] 李绍龙, 张正娣, 吴天一, 毕勤胜. 广义BVP电路系统的振荡行为及其非光滑分岔机理. 物理学报, 2012, 61(6): 060504. doi: 10.7498/aps.61.060504
    [13] 姜海波, 张丽萍, 陈章耀, 毕勤胜. 脉冲作用下Chen系统的非光滑分岔分析. 物理学报, 2012, 61(8): 080505. doi: 10.7498/aps.61.080505
    [14] 冯俊, 徐伟, 顾仁财, 狄根虎. 有界噪声与谐和激励联合作用下Duffing-Rayleigh振子的Melnikov混沌. 物理学报, 2011, 60(9): 090507. doi: 10.7498/aps.60.090507
    [15] 刘扬正, 林长圣, 李心朝. 切换统一混沌系统族. 物理学报, 2011, 60(4): 040505. doi: 10.7498/aps.60.040505
    [16] 张银, 毕勤胜. 具有多分界面的非线性电路中的非光滑分岔. 物理学报, 2011, 60(7): 070507. doi: 10.7498/aps.60.070507
    [17] 季颖, 毕勤胜. 分段线性混沌电路的非光滑分岔分析. 物理学报, 2010, 59(11): 7612-7617. doi: 10.7498/aps.59.7612
    [18] 刘扬正, 姜长生, 林长圣, 孙 晗. 四维切换超混沌系统. 物理学报, 2007, 56(9): 5131-5135. doi: 10.7498/aps.56.5131
    [19] 刘扬正, 姜长生, 林长圣, 熊 星, 石 磊. 一类切换混沌系统的实现. 物理学报, 2007, 56(6): 3107-3112. doi: 10.7498/aps.56.3107
    [20] 童培庆, 赵灿东. 强迫布鲁塞尔振子中混沌行为的控制. 物理学报, 1995, 44(1): 35-42. doi: 10.7498/aps.44.35
计量
  • 文章访问数:  7408
  • PDF下载量:  811
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-13
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

/

返回文章
返回