搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

余维-1非光滑分岔下的簇发振荡及其机理

张正娣 刘杨 张苏珍 毕勤胜

引用本文:
Citation:

余维-1非光滑分岔下的簇发振荡及其机理

张正娣, 刘杨, 张苏珍, 毕勤胜

Bursting oscillations as well as the mechanism with codimension-1 non-smooth bifurcation

Zhang Zheng-Di, Liu Yang, Zhang Su-Zhen, Bi Qin-Sheng
PDF
导出引用
  • 不同尺度耦合会导致一些特殊的振荡行为,通常表现为大幅振荡与微幅振荡的组合,也即所谓的簇发振荡.迄今为止,相关工作大都是围绕光滑系统开展的,而非光滑系统中由于存在着各种形式的非常规分岔,从而可能会导致更为复杂的簇发振荡模式.本文旨在揭示存在非光滑分岔时动力系统的不同尺度耦合效应.以典型的含两个非光滑分界面的广义蔡氏电路为例,通过引入周期变化的电流源以及一个用于控制的电容,选取适当的参数使得周期频率与系统频率之间存在量级差距,建立了含不同尺度的四维分段线性动力系统模型.基于快子系统在不同区域中的平衡点及其稳定性分析,以及系统轨迹穿越非光滑分界面时的分岔分析,得到了不同余维非光滑分岔的存在条件及其分岔行为.重点探讨了余维-1非光滑分岔下的簇发振荡的吸引子结构及其产生机理,揭示了非光滑分岔下系统复杂振荡行为的本质.
    The coupling of different scales in nonlinear systems may lead to some special dynamical phenomena, which always behaves in the combination between large-amplitude oscillations and small-amplitude oscillations, namely bursting oscillations. Up to now, most of therelevant reports have focused on the smooth dynamical systems. However, the coupling of different scales in non-smooth systems may lead to more complicated forms of bursting oscillations because of the existences of different types of non-conventional bifurcations in non-smooth systems. The main purpose of the paper is to explore the coupling effects of multiple scales in non-smooth dynamical systems with non-conventional bifurcations which may occur at the non-smooth boundaries. According to the typical generalized Chua's electrical circuit which contains two non-smooth boundaries, we establish a four-dimensional piecewise-linear dynamical model with different scales in frequency domain. In the model, we introduce a periodically changed current source as well as a capacity for controlling. We select suitable parameter values such that an order gap exists between the exciting frequency and the natural frequency. The state space is divided into several regions in which different types of equilibrium points of the fast sub-system can be observed. By employing the generalized Clarke derivative, different forms of non-smooth bifurcations as well as the conditions are derived when the trajectory passes across the non-smooth boundaries. The case of codimension-1 non-conventional bifurcation is taken for example to investigate the effects of multiple scales on the dynamics of the system. Periodic bursting oscillations can be observed in which codimension-1 bifurcation causes the transitions between the quiescent states and the spiking states. The structure analysis of the attractor points out that the trajectory can be divided into three segments located in different regions. The theoretical period of the movement as well as the amplitudes of the spiking oscillations is derived accordingly, which agrees well with the numerical result. Based on the envelope analysis, the mechanism of the bursting oscillations is presented, which reveals the characteristics of the quiescent states and the repetitive spiking oscillations. Furthermore, unlike the fold bifurcations which may lead to jumping phenomena between two different equilibrium points of the system, the non-smooth fold bifurcation may cause the jumping phenomenon between two equilibrium points located in two regions divided by the non-smooth boundaries. When the trajectory of the system passes across the non-smooth boundaries, non-smooth fold bifurcations may cause the system to tend to different equilibrium points, corresponding to the transitions between quiescent states and spiking states, which may lead to the bursting oscillations.
      通信作者: 毕勤胜, qbi@ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11472115,11472116)和江苏省青蓝工程资助的课题.
      Corresponding author: Bi Qin-Sheng, qbi@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472115, 11472116) and the Qinglan Project of Jiangsu Province, China.
    [1]

    Siefert A, Henkel F O 2014 Nucl. Eng. Des. 269 130

    [2]

    Duan C, Singh R 2005 J. Sound Vib. 285 1223

    [3]

    Zhusubaliyev Z H, Mosekilde E 2008 Phys. Lett. A 372 2237

    [4]

    Jiang H B, Li T, Zeng X L, Zhang L P 2013 Acta Phys. Sin. 62 120508 (in Chinese)[姜海波, 李涛, 曾小亮, 张丽萍2013物理学报62 120508]

    [5]

    Galvenetto U 2001 J. Sound Vib. 248 653

    [6]

    Carmona V, Fernández-García S, Freire E 2012 Physica D 241 623

    [7]

    Dercole F, Gragnani A, Rinaldi S 2007 Theor. Popul. Biol. 72 197

    [8]

    Zhusubaliyev Z T, Mosekilde E 2008 Physica D 237 930

    [9]

    Rene O, Baptista M S, Caldas I L 2003 Physica D 186 133

    [10]

    Shaw S W, Holmes P A 1983 J. Sound Vib. 90 129

    [11]

    Nordmark A, Dankowicz H, Champneys A 2009 Int. J. Non-Linear Mech. 44 1011

    [12]

    Hu H Y 1995 Chaos, Solitons Fractals 5 2201

    [13]

    Xu H D 2008 Ph. D. Dissertation(Sichuan:Southwest Jiaotong University) (in Chinese)[徐慧东2008博士学位论文(四川:西南交通大学)]

    [14]

    Lu Q S, Jin L 2005 Acta Mech. Sol. Sin. 26 132 (in Chinese)[陆启韶, 金俐2005固体力学学报26 132]

    [15]

    Jiang H B, Zhang L P, Chen Z Y, Bi Q S 2012 Acta Phys. Sin. 61 080505 (in Chinese)[姜海波, 张丽萍, 陈章耀, 毕勤胜2012物理学报61 080505]

    [16]

    Stavrinides S G, Deliolanis N C 2008 Chaos, Solitons Fractals 36 1055

    [17]

    Leine R I 2006 Physica D 223 121

    [18]

    Jia Z, Leimkuhler B 2003 Future Gener. Comp. Syst. 19 415

    [19]

    Leimkuhler B 2002 Appl. Numer. Math. 43 175

    [20]

    Gyorgy L, Field R J 1992 Nature 355 808

    [21]

    Duan L X, Lu Q S, Wang Q Y 2008 Neurocomputing 72 341

    [22]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [23]

    Izhikevich E M 2000 Int. J. Bifurcation Chaos 6 1171

    [24]

    Chua L O, Lin G N 1990 IEEE Trans. Circuits Syst. 37 885

    [25]

    Mkaouar H, Boubaker O 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1292

    [26]

    Kahan S, Sicardi-Schifino A C 1999 Physica A 262 144

    [27]

    Baptist M S, Caldas I L 1999 Physica D 132 325

    [28]

    Stavrinides S G, Deliolanis N C, Miliou A N, Laopoulos T, Anagnostopoulos A N 2008 Chaos, Solitons Fractals 36 1055

  • [1]

    Siefert A, Henkel F O 2014 Nucl. Eng. Des. 269 130

    [2]

    Duan C, Singh R 2005 J. Sound Vib. 285 1223

    [3]

    Zhusubaliyev Z H, Mosekilde E 2008 Phys. Lett. A 372 2237

    [4]

    Jiang H B, Li T, Zeng X L, Zhang L P 2013 Acta Phys. Sin. 62 120508 (in Chinese)[姜海波, 李涛, 曾小亮, 张丽萍2013物理学报62 120508]

    [5]

    Galvenetto U 2001 J. Sound Vib. 248 653

    [6]

    Carmona V, Fernández-García S, Freire E 2012 Physica D 241 623

    [7]

    Dercole F, Gragnani A, Rinaldi S 2007 Theor. Popul. Biol. 72 197

    [8]

    Zhusubaliyev Z T, Mosekilde E 2008 Physica D 237 930

    [9]

    Rene O, Baptista M S, Caldas I L 2003 Physica D 186 133

    [10]

    Shaw S W, Holmes P A 1983 J. Sound Vib. 90 129

    [11]

    Nordmark A, Dankowicz H, Champneys A 2009 Int. J. Non-Linear Mech. 44 1011

    [12]

    Hu H Y 1995 Chaos, Solitons Fractals 5 2201

    [13]

    Xu H D 2008 Ph. D. Dissertation(Sichuan:Southwest Jiaotong University) (in Chinese)[徐慧东2008博士学位论文(四川:西南交通大学)]

    [14]

    Lu Q S, Jin L 2005 Acta Mech. Sol. Sin. 26 132 (in Chinese)[陆启韶, 金俐2005固体力学学报26 132]

    [15]

    Jiang H B, Zhang L P, Chen Z Y, Bi Q S 2012 Acta Phys. Sin. 61 080505 (in Chinese)[姜海波, 张丽萍, 陈章耀, 毕勤胜2012物理学报61 080505]

    [16]

    Stavrinides S G, Deliolanis N C 2008 Chaos, Solitons Fractals 36 1055

    [17]

    Leine R I 2006 Physica D 223 121

    [18]

    Jia Z, Leimkuhler B 2003 Future Gener. Comp. Syst. 19 415

    [19]

    Leimkuhler B 2002 Appl. Numer. Math. 43 175

    [20]

    Gyorgy L, Field R J 1992 Nature 355 808

    [21]

    Duan L X, Lu Q S, Wang Q Y 2008 Neurocomputing 72 341

    [22]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [23]

    Izhikevich E M 2000 Int. J. Bifurcation Chaos 6 1171

    [24]

    Chua L O, Lin G N 1990 IEEE Trans. Circuits Syst. 37 885

    [25]

    Mkaouar H, Boubaker O 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1292

    [26]

    Kahan S, Sicardi-Schifino A C 1999 Physica A 262 144

    [27]

    Baptist M S, Caldas I L 1999 Physica D 132 325

    [28]

    Stavrinides S G, Deliolanis N C, Miliou A N, Laopoulos T, Anagnostopoulos A N 2008 Chaos, Solitons Fractals 36 1055

  • [1] 王梦蛟, 杨琛, 贺少波, 李志军. 一种新型复合指数型局部有源忆阻器耦合的Hopfield神经网络. 物理学报, 2024, 73(13): 130501. doi: 10.7498/aps.73.20231888
    [2] 杨金颖, 王彬彬, 刘恩克. 磁性拓扑材料中贝利曲率驱动的非常规电输运行为. 物理学报, 2023, 72(17): 177103. doi: 10.7498/aps.72.20230995
    [3] 李建新. 自旋涨落与非常规超导配对. 物理学报, 2021, 70(1): 017408. doi: 10.7498/aps.70.20202180
    [4] 胡江平. 探索非常规高温超导体. 物理学报, 2021, 70(1): 017101. doi: 10.7498/aps.70.20202122
    [5] 张绍华, 王聪, 张宏立. 永磁同步电动机的簇发振荡分析及协同控制. 物理学报, 2020, 69(21): 210501. doi: 10.7498/aps.69.20200413
    [6] 李宏, 张斯淇, 郭明, 李美萱, 宋立军. Fabry-Perot腔与光学参量放大复合系统中实现可调谐的非常规光子阻塞. 物理学报, 2019, 68(12): 124203. doi: 10.7498/aps.68.20190154
    [7] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展. 物理学报, 2018, 67(15): 157504. doi: 10.7498/aps.67.20180936
    [8] 张正娣, 刘亚楠, 李静, 毕勤胜. 分段Filippov系统的簇发振荡及擦边运动机理. 物理学报, 2018, 67(11): 110501. doi: 10.7498/aps.67.20172421
    [9] 程金光. 高压调控的磁性量子临界点和非常规超导电性. 物理学报, 2017, 66(3): 037401. doi: 10.7498/aps.66.037401
    [10] 吴天一, 陈小可, 张正娣, 张晓芳, 毕勤胜. 非对称型簇发振荡吸引子结构及其机理分析. 物理学报, 2017, 66(11): 110501. doi: 10.7498/aps.66.110501
    [11] 邢雅清, 陈小可, 张正娣, 毕勤胜. 多平衡态下簇发振荡产生机理及吸引子结构分析. 物理学报, 2016, 65(9): 090501. doi: 10.7498/aps.65.090501
    [12] 吴立锋, 关永, 刘勇. 分段线性电路切换系统的复杂行为及非光滑分岔机理. 物理学报, 2013, 62(11): 110510. doi: 10.7498/aps.62.110510
    [13] 余跃, 张春, 韩修静, 姜海波, 毕勤胜. 周期切换下Chen系统的振荡行为与非光滑分岔分析. 物理学报, 2013, 62(2): 020508. doi: 10.7498/aps.62.020508
    [14] 李旭, 张正娣, 毕勤胜. 两时间尺度下非光滑广义蔡氏电路系统的簇发振荡机理. 物理学报, 2013, 62(22): 220502. doi: 10.7498/aps.62.220502
    [15] 姜海波, 张丽萍, 陈章耀, 毕勤胜. 脉冲作用下Chen系统的非光滑分岔分析. 物理学报, 2012, 61(8): 080505. doi: 10.7498/aps.61.080505
    [16] 李群宏, 闫玉龙, 杨丹. 耦合电路系统的分岔研究. 物理学报, 2012, 61(20): 200505. doi: 10.7498/aps.61.200505
    [17] 吴天一, 张正娣, 毕勤胜. 切换电路系统的振荡行为及其非光滑分岔机理. 物理学报, 2012, 61(7): 070502. doi: 10.7498/aps.61.070502
    [18] 李绍龙, 张正娣, 吴天一, 毕勤胜. 广义BVP电路系统的振荡行为及其非光滑分岔机理. 物理学报, 2012, 61(6): 060504. doi: 10.7498/aps.61.060504
    [19] 季颖, 毕勤胜. 分段线性混沌电路的非光滑分岔分析. 物理学报, 2010, 59(11): 7612-7617. doi: 10.7498/aps.59.7612
    [20] 张永祥, 孔贵芹, 俞建宁. 振动筛系统的两类余维三分岔与非常规混沌演化. 物理学报, 2008, 57(10): 6182-6187. doi: 10.7498/aps.57.6182
计量
  • 文章访问数:  6516
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-15
  • 修回日期:  2016-11-02
  • 刊出日期:  2017-01-20

/

返回文章
返回