搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型非常规超导体UTe2的单晶生长方法研究进展

薛子威 袁登鹏 谭世勇

引用本文:
Citation:

新型非常规超导体UTe2的单晶生长方法研究进展

薛子威, 袁登鹏, 谭世勇

Advances in single crystal growth methods for novel unconventional superconductor UTe2

XUE Ziwei, YUAN Dengpeng, TAN Shiyong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 作为近年来新发现的非常规超导体, 重费米子化合物二碲化铀(UTe2)因被认为存在自旋三重态超导配对、高场再入超导相和新奇量子临界特征而受到广泛关注. 然而, 不同的样品质量导致该体系的实验研究结果呈现出明显的差异甚至矛盾. 关于是否多组分超导序参量、是否时间反演对称性破缺和多个场致超导相是否相同起源等关键问题, 学界争议激烈, 严重阻碍了对该体系本征超导配对机制的深度认识和理解. 本文总结了UTe2的单晶生长方法研究进展, 包括化学气相输运法、熔盐助熔剂法、碲助熔剂法和熔盐助熔剂液体输运法, 并梳理了生长条件对样品超导性和结晶质量的影响, 最后进行了总结和展望.
    Heavy fermion compound UTe2, as a recently discovered unconventional superconductor, has received significant attention due to its potential spin-triplet superconducting pairing, high-field re-entrant superconducting phases, and unique quantum critical characteristics. However, experimental results of this system show significant changes and discrepancies, primarily due to difference in sample quality. The key unresolved issues include whether the system exhibits multi-component superconducting order parameters, whether time-reversal symmetry is spontaneously broken, and whether multiple field-induced superconducting phases share a common origin. These unsolved issues hinder an in-depth understanding of the intrinsic superconducting pairing mechanism in the UTe2 system.This paper reviews recent advances in single-crystal growth methods for UTe2, including chemical vapor transport (CVT), Te-flux, molten salt flux (MSF), and molten salt flux liquid transport (MSFLT). We systematically analyze how growth conditions influence superconductivity and crystal quality. Although the CVT method was initially employed in UTe2 studies, the samples grown by this method exhibit poor quality and significant compositional inhomogeneity, even in individual samples. Consequently, the CVT method has been progressively supplanted by the recently developed MSF method. In contrast, the MSF method and MSFLT method yield high-quality UTe2 single crystals with Tc achieving a value as high as 2.1 K and residual resistivity ratio (RRR) reaching up to 1000; however, the sample sizes are smaller than those grown by the CVT and Te-flux methods. Notably, MSF-grown samples occasionally contain magnetic impurities such as U7Te12, so careful screening is required in the sample collection process. The MSFLT combines the advantages of CVT and MSF methods to grow high-quality UTe2 single crystals while producing larger sample sizes than MSF. Our research findings highlight the importance of optimizing growth parameters such as Te/U ratio, temperature gradient, and cooling rate. For instance, lower growth temperature and precise control of the Te/U ratio can significantly enhance Tc and sample quality. Several controversies have been identified regarding high-quality MSF and MSFLT samples, including clarifying the single-component nature of the superconducting order parameter and confirming the absence of time-reversal symmetry breaking in optimized samples.This review underscores the pivotal role of advanced single-crystal growth techniques in advancing the study of UTe2. Future research should focus on utilizing these high-quality UTe2 samples grown by MSF and MSFLT methods to accurately determine superconducting order parameters, elucidate mechanisms behind high-field re-entrant superconducting phases, and explore topological properties, such as potential Majorana fermions. These efforts will deepen our understanding of unconventional superconductivity, spin fluctuations, and quantum critical phenomena in the UTe2 system.
  • 图 1  UTe2单晶的生长方法示意图 (a) Te-flux法; (b) MSF法; (c) CVT法; (d) MSFLT法.

    Fig. 1.  Illustration of the single crystal growth methods for UTe2: (a) Te-flux method; (b) MSF method; (c) CVT method; (d) MSFLT method.

    图 2  UTe2超导电性的首次发现 (a) 电阻率随温度变化; (b) 低温比热数据中的电子贡献随温度变化. 数据来源于文献[1].

    Fig. 2.  First discovery of UTe2 superconductivity: (a) Temperature dependence of resistivity; (b) temperature dependence of electric contribution from low temperature specific heat data. The data are taken from Ref.[1].

    图 3  (a)不同起始原料摩尔比MTe/U样品的电阻率测量结果[28], 并与Ran等[1]和Hayes等[13]对比; (b) Tc = 2 K样品(C6)的比热测量结果, 插图为样品照片[28]

    Fig. 3.  (a) Resistivity of samples with different initial molar ratios MTe/U [28] and comparison with those reported by Ran et al. [1] and Hayes et al. [13]; (b) specific heat data of sample C6 with Tc = 2 K, and the inset shows a sample image [28].

    图 4  (a)不同生长温度获得UTe2样品的比热数据[17]; (b) 1060—1000 ℃温度梯度下生长的UTe2样品中测得Tc附近的极化Kerr角度演化[13]. 数据来源于文献[17,13].

    Fig. 4.  (a) Specific heat data of UTe2 samples obtained at different growth temperatures [17]; (b) polar Kerr angle evolution near Tc in a UTe2 sample grown under a temperature gradient of 1060–1000 ℃[13]. The data are taken from Ref.[17,13].

    图 5  不同生长温度下获得UTe2样品的照片, 起始原料摩尔比MTe/U = 2, 标注为高温端温度 [36] (a) 810 ℃; (b) 860 ℃; (c) 930 ℃; (d) 1010 ℃; (e) 1060 ℃. 出自文献[36], 已获得授权.

    Fig. 5.  Photos of UTe2 samples obtained at different growth temperatures, with the molar ratio of the starting materials (MTe/U) set to 2, are labeled with the high-end temperatures [36]: (a) 810 ℃; (b) 860 ℃; (c) 930 ℃; (d) 1010 ℃; (e) 1060 ℃. Reproduced with permission from Ref.[36].

    图 6  (a) Te-flux样品照片[32]; (b) CVT样品照片[32]; (c)电阻率测量结果对比; (d)比热测量结果对比. (c)和(d)的数据来源于文献[24].

    Fig. 6.  (a) Photos of Te-flux samples[32]; (b) photos of CVT samples[32]; (c) comparison of resistivity data; (d) comparison of specific heat data. The data of (c) and (d) are taken from Ref.[24].

    图 7  (a) MSF与CVT样品的归一化电阻率对比; (b) MSF方法生长获得U-Te体系产物与原料Te/U的关系. 数据来源于文献[39].

    Fig. 7.  (a) Normalized resistivity comparison of MSF and CVT samples; (b) the relationship between the product of U-Te system grown by MSF method and raw material Te/U. The data are taken from Ref.[39].

    图 8  MSF方法生长高质量UTe2单晶样品的高磁场超导相图[53]

    Fig. 8.  High magnetic field superconducting phase diagram of high quality UTe2 single crystal sample grown by MSF method [53].

    图 9  (a) MSFLT生长的UTe2单晶样品照片, 右上角插图为样品嵌于混合盐中的照片; (b) MSFLT样品的比热测量结果[54]

    Fig. 9.  (a) Photograph of MSFLT-grown UTe2 single crystal samples, the inset in the upper right corner shows the sample embedded in the flux; (b) specific heat data of a MSFLT sample [54].

    表 1  CVT起始原料摩尔比MTe/U对UTe2样品实际成分和Tc的影响[28]

    Table 1.  The impact of the molar ratio of MTe/U in CVT starting materials on the actual composition and Tc of UTe2 samples [28].

    样品分组起始原料
    摩尔比MTe/U
    EDX测得的
    MTe/U范围
    电阻率
    测得的Tc
    A1.711.46—1.501.74 K
    B2.141.79—2.06无超导
    C1.851.72—1.872.00 K
    下载: 导出CSV

    表 2  CVT生长温度对UTe2单晶的Tc和样品质量的影响[17]

    Table 2.  Effect of CVT growth temperature on Tc and sample quality of UTe2 single crystals [17].

    样品
    编号
    生长
    温度/℃
    比热
    测得的
    Tc/K
    RRR γ*/γN
    (γN = 121
    mJ·mol–1·K–1)
    s1 1060—1000 1.64
    1.48
    30—40 0.54
    s2 950—860 1.68 0.42
    s3 925—835 1.77 0.36
    s4 875—785 1.85 55 0.34
    s5 825—735 1.95 70 0.21
    s6 800—710 2.00 88 0.19
    s7 775—685 No SC 2
    下载: 导出CSV

    表 3  MSF方法工艺参数对UTe2单晶Tc和样品质量的影响[39]

    Table 3.  Effect of MSF process parameters on the Tc and sample quality of UTe2 single crystals [39].

    样品编号 原料比例 Tf/℃ Tc/K RRR 备注
    MTe/U MSalt/U
    M1 2 29 650 1.7—1.8 40—60
    M2 1.93 37 650 1.9—2.0 60—80
    M3 1.92 36 650 1.95—2.0 30—40
    M4 1.90 40 650 1.8—1.95 50—60
    M5 1.90 67 650 1.9—2.05 50—60
    M6 1.8 21 650 产物为U7Te12
    M6 a 1.8 40 650 2.0—2.1 80—130 主要产物为U7Te12
    M7 1.71 60 650 2.1 170—1000 主要产物为U7Te12
    H1 2.0 48 700 1.6 11—12 离心去除盐
    H2 1.95 42 700 1.75—1.9 35—60
    L1 1.95 38 600 1.6—1.8 20—30
    L2 1.90 44 600 2.1—2.2 65—70 聚集晶体
    下载: 导出CSV

    表 4  不同生长方法获得UTe2单晶的Tc和样品质量对比[54]

    Table 4.  Comparison of Tc and sample quality of UTe2 single crystals grown by different methods [54].

    生长方法原料比例MTe/U助熔剂/输运剂生长温度/℃Tc/KRRRγ*/γN
    Te-flux3.55Te10501.083.6
    CVT2.00I2950—8502.5
    CVT1.50I21050—9901.65140.61
    CVT1.40I2780—6802.01490.13
    MSF1.80NaCl+KCl950<1.7220.78
    MSF1.65NaCl+KCl9502.062200.046
    MSFLT1.50NaCl+KCl750—6502.061790.124
    MSFLT1.65NaCl+KCl750—6502.098000.034
    下载: 导出CSV

    表 5  不同生长方法的工艺特点与优缺点.

    Table 5.  Process characteristics, advantages and disadvantages of different growth methods.

    方法 最优的
    工艺参数
    最佳的
    超导样品
    影响因素 优点 缺点
    CVT 原料比例MTe/U = 1.5;
    生长温度梯度800—710 ℃.
    Tc = 2.0 K;
    RRR = 88.
    原料比例MTe/U;
    生长温度梯度.
    生长温度较低;
    样品尺寸大.
    样品质量较差;
    成分均匀性差.
    Te-flux 原料比例MTe/U = 3.55;
    生长温度1050 ℃;
    离心温度950 ℃.
    Tc = 1.1 K;
    RRR = 4.
    原料比例MTe/U;
    生长温度;
    降温速率.
    工艺简单;
    样品产量高;
    样品尺寸大.
    几乎不超导;
    样品质量差;
    生长温度高.
    MSF 原料比例MTe/U = 1.71;
    原料比例MSalt/U = 60;
    生长温度950 ℃;
    退火温度650 ℃.
    Tc = 2.1 K;
    RRR = 1000.
    原料比例MTe/U;
    原料比例MSalt/U;
    退火温度;
    降温速率;
    助熔剂盐的含水量.
    样品质量高;
    生长温度较低.
    产物伴随有磁性杂质U7Te12;
    样品尺寸小.
    MSFLT 原料比例MTe/U = 1.65;
    生长温度梯度750—670 ℃.
    Tc = 2.09 K;
    RRR = 800.
    原料比例MTe/U;
    助熔剂盐的含水量.
    样品质量高;
    生长温度低.
    样品尺寸较小.
    下载: 导出CSV
  • [1]

    Ran S, Eckberg C, Ding Q P, Furukawa Y, Metz T, Saha S R, Liu I L, Zic M, Kim H, Paglione J 2019 Science 365 684Google Scholar

    [2]

    Nakamine G, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2019 J. Phys. Soc. Jpn. 88 43702Google Scholar

    [3]

    Nakamine G, Kinjo K, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2021 Phys. Rev. B 103 L100503Google Scholar

    [4]

    Fujibayashi H, Nakamine G, Kinjo K, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2022 J. Phys. Soc. Jpn. 91 043705Google Scholar

    [5]

    冉升, 焦琳 2021 中国科学: 物理学 力学 天文学) 51 047406Google Scholar

    Ran S, Jiao L 2021 Sci. Sin. -Phys. Mech. Astron. 51 047406Google Scholar

    [6]

    Ran S, Liu I, Eo Y S, Campbell D J, Neves P M, Fuhrman W T, Saha S R, Eckberg C, Kim H, Graf D, Balakirev F, Singleton J, Paglione J, Butch N P 2019 Nat. Phys. 15 1250Google Scholar

    [7]

    Knebel G, Knafo W, Pourret A, Niu Q, Valiska M, Braithwaite D, Lapertot G, Nardone M, Zitouni A, Mishra S, Sheikin I, Seyfarth G, Brison J, Aoki D, Flouquet J 2019 J. Phys. Soc. Jpn. 88 063707Google Scholar

    [8]

    Ikeda S, Sakai H, Aoki D, Homma Y, Yamamoto E, Nakamura A, Shiokawa Y, Haga Y, Onuki Y 2006 J. Phys. Soc. Jpn. 75 116Google Scholar

    [9]

    Braithwaite D, Valiska M, Knebel G, Lapertot G, Brison J, Pourret A, Zhitomirsky M E, Flouquet J, Honda F, Aoki D 2019 Commun. Phys. 2 147Google Scholar

    [10]

    Aoki D, Honda F, Knebel G, Braithwaite D, Nakamura A, Li D, Homma Y, Shimizu Y, Sato Y J, Brison J, Flouquet J 2020 J. Phys. Soc. Jpn. 89 053705Google Scholar

    [11]

    Ran S, Kim H, Liu I, Saha S R, Hayes I, Metz T, Eo Y S, Paglione J, Butch N P 2020 Phys. Rev. B 101 140503Google Scholar

    [12]

    Lin W, Campbell D J, Ran S, Liu I, Kim H, Nevidomskyy A H, Graf D, Butch N P, Paglione J 2020 npj Quantum Mater. 5 68Google Scholar

    [13]

    Hayes I M, Wei D S, Metz T, Zhang J, Eo Y S, Ran S, Saha S R, Collini J, Butch N P, Agterberg D F, Kapitulnik A, Paglione J 2021 Science 373 797Google Scholar

    [14]

    Thomas S M, Santos F B, Christensen M H, Asaba T, Ronning F, Thompson J D, Bauer E D, Fernandes R M, Fabbris G, Rosa P F S 2020 Sci. Adv. 6 eabc8709Google Scholar

    [15]

    Aoki D, Brison J, Flouquet J, Ishida K, Knebel G, Tokunaga Y, Yanase Y 2022 J. Phys. Condens. Matter 34 243002Google Scholar

    [16]

    Thomas S M, Stevens C, Santos F B, Fender S S, Bauer E D, Ronning F, Thompson J D, Huxley A, Rosa P F S 2021 Phys. Rev. B 104 224501Google Scholar

    [17]

    Rosa P F S, Weiland A, Fender S S, Scott B L, Ronning F, Thompson J D, Bauer E D, Thomas S M 2022 Commun. Mater. 3 33Google Scholar

    [18]

    Aoki D, Sakai H, Opletal P, Tokiwa Y, Ishizuka J, Yanase Y, Harima H, Nakamura A, Li D, Homma Y, Shimizu Y, Knebel G, Flouquet J, Haga Y 2022 J. Phys. Soc. Jpn. 91 083704Google Scholar

    [19]

    Eaton A G, Weinberger T I, Popiel N J M, Wu Z, Hickey A J, Cabala A, Pospisil J, Prokleska J, Haidamak T, Bastien G, Opletal P, Sakai H, Haga Y, Nowell R, Benjamin S M, Sechovsky V, Lonzarich G G, Grosche F M, Valiska M 2024 Nat. Commun. 15 223Google Scholar

    [20]

    Ajeesh M O, Bordelon M, Girod C, Mishra S, Ronning F, Bauer E D, Maiorov B, Thompson J D, Rosa P F S, Thomas S M 2023 Phys. Rev. X 13 041019

    [21]

    Xu Y, Sheng Y, Yang Y 2019 Phys. Rev. Lett. 123 217002Google Scholar

    [22]

    Stöwe K 1996 J. Solid. State. Chem. 127 202Google Scholar

    [23]

    Ran S, Liu I L, Saha S R, Saraf P, Paglione J, Butch N P 2021 J. Vis. Exp. 173 e62563

    [24]

    Aoki D, Nakamura A, Honda F, Li D, Homma Y, Shimizu Y, Sato Y J, Knebel G, Brison J, Pourret A, Braithwaite D, Lapertot G, Niu Q, Vališka M, Harima H, Flouquet J 2019 J. Phys. Soc. Jpn. 88 043702Google Scholar

    [25]

    Jiao L, Howard S, Ran S, Wang Z, Rodriguez J O, Sigrist M, Wang Z, Butch N P, Madhavan V 2020 Nature 579 523Google Scholar

    [26]

    Fujimori S, Kawasaki D, Takeda Y, Yamagami H, Nakamura A, Homma Y, Aoki D 2019 J. Phys. Soc. Jpn. 88 103701Google Scholar

    [27]

    Miao L, Liu S, Xu Y, Kotta E C, Kang C, Ran S, Paglione J, Kotliar G, Butch N P, Denlinger J D, Wray L A 2020 Phys. Rev. Lett. 124 076401Google Scholar

    [28]

    Cairns L P, Stevens C R, O'Neill C D, Huxley A 2020 J. Phys. Condens. Matter 32 415602Google Scholar

    [29]

    Haga Y, Opletal P, Tokiwa Y, Yamamoto E, Tokunaga Y, Kambe S, Sakai H 2022 J. Phys. Condens. Matter 34 175601Google Scholar

    [30]

    Yang C, Guo J, Cai S, Zhou Y, Sidorov V A, Huang C, Long S, Shi Y, Chen Q, Tan S, Wu Q, Coleman P, Xiang T, Sun L 2022 Phys. Rev. B 106 24503Google Scholar

    [31]

    Frank C E, Lewin S K, Salas G S, Czajka P, Hayes I M, Yoon H, Metz T, Paglione J, Singleton J, Butch N P 2024 Nat. Commun. 15 3378Google Scholar

    [32]

    Aoki D, Nakamura A, Honda F, Li D, Homma Y, Shimizu Y, Sato Y J, Knebel G, Brison J, Pourret A, Braithwaite D, Lapertot G, Niu Q, Vali Ka M, Harima H, Flouquet J 2020 Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019) Okayama, Japan, September 23-28, 2019 011065

    [33]

    Mineev V P 2022 J. Phys. Soc. Jpn. 91 074601Google Scholar

    [34]

    Sundar S, Azari N, Goeks M R, Gheidi S, Abedi M, Yakovlev M, Dunsiger S R, Wilkinson J M, Blundell S J, Metz T E, Hayes I M, Saha S R, Lee S, Woods A J, Movshovich R, Thomas S M, Butch N P, Rosa P F S, Paglione J, Sonier J E 2023 Commun. Phys. 6 24Google Scholar

    [35]

    Theuss F, Shragai A, Grissonnanche G, Hayes I M, Saha S R, Eo Y S, Suarez A, Shishidou T, Butch N P, Paglione J, Ramshaw B J 2024 Nat. Phys. 20 1124Google Scholar

    [36]

    Yao S, Li T, Yue C, Xu X, Zhang B, Zhang C 2022 CrystEngComm 24 6262Google Scholar

    [37]

    谢东华, 赖新春, 谭世勇, 张文, 刘毅, 冯卫, 张云, 刘琴, 朱燮刚, 袁秉凯, 方运 2016 稀有金属材料与工程 45 2128

    Xie D H, Lai X C, Tan S Y, Zhang W, Liu Y, Feng W, Zhang Y, Liu Q, Zhu X G, Yuan B K, Fang Y 2016 Rare Met. Mater. Eng. 45 2128

    [38]

    Ji X, Liu Q, Feng W, Zhang Y, Chen Q, Liu Y, Hao Q, Wu J, Xue Z, Zhu X, Zhang Q, Luo X, Tan S, Lai X 2024 Phys. Rev. B 109 075158Google Scholar

    [39]

    Sakai H, Opletal P, Tokiwa Y, Yamamoto E, Tokunaga Y, Kambe S, Haga Y 2022 Phys. Rev. Mater. 6 073401Google Scholar

    [40]

    Bdey S, Savvin S N, Bourguiba N F, Núñez P 2022 J. Solid State Chem. 305 122644Google Scholar

    [41]

    Kwon M J, Binh N V, Cho S, Shim S B, Ryu S H, Jung Y J, Nam W H, Cho J Y, Park J H 2024 Electron. Mater. Lett. 20 559Google Scholar

    [42]

    Chen H, Singh S, Mei H, Ren G, Zhao B, Surendran M, Wang Y, Mishra R, Kats M A, Ravichandran J 2024 J. Mater. Res. 39 1901Google Scholar

    [43]

    Matsumura H, Fujibayashi H, Kinjo K, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2023 J. Phys. Soc. Jpn. 92 063701Google Scholar

    [44]

    Ishihara K, Roppongi M, Kobayashi M, Imamura K, Mizukami Y, Sakai H, Opletal P, Tokiwa Y, Haga Y, Hashimoto K, Shibauchi T 2023 Nat. Commun. 14 2966Google Scholar

    [45]

    Azari N, Yakovlev M, Rye N, Dunsiger S R, Sundar S, Bordelon M M, Thomas S M, Thompson J D, Rosa P F S, Sonier J E 2023 Phys. Rev. Lett. 131 226504Google Scholar

    [46]

    Ishihara K, Kobayashi M, Imamura K, Konczykowski M, Sakai H, Opletal P, Tokiwa Y, Haga Y, Hashimoto K, Shibauchi T 2023 Phys. Rev. Res. 5 L022002Google Scholar

    [47]

    Vališka M, Haidamak T, Cabala A, Pospíšil J, Bastien G, Sechovský V, Prokleška J, Yanagisawa T, Opletal P, Sakai H, Haga Y, Miyata A, Gorbunov D, Zherlitsyn S 2024 Phys. Rev. Mater. 8 094415Google Scholar

    [48]

    Broyles C, Rehfuss Z, Siddiquee H, Zhu J A, Zheng K, Nikolo M, Graf D, Singleton J, Ran S 2023 Phys. Rev. Lett. 131 036501Google Scholar

    [49]

    Aoki D, Sheikin I, McCollam A, Ishizuka J, Yanase Y, Lapertot G, Flouquet J, Knebel G 2023 J. Phys. Soc. Jpn. 92 065002Google Scholar

    [50]

    Weinberger T I, Wu Z, Graf D E, Skourski Y, Cabala A, Pospíšil J, Prokleška J, Haidamak T, Bastien G, Sechovský V, Lonzarich G G, Vališka M, Grosche F M, Eaton A G 2024 Phys. Rev. Lett. 132 266503Google Scholar

    [51]

    Serrano K, Taxil P 1999 J. Appl. Electrochem. 29 497Google Scholar

    [52]

    Opletal P, Sakai H, Haga Y, Tokiwa Y, Yamamoto E, Kambe S, Tokunaga Y 2023 J. Phys. Soc. Jpn. 92 034704Google Scholar

    [53]

    Wu Z, Weinberger T I, Chen J, Cabala A, Chichinadze D V, Shaffer D, Pospíšil J, Prokleška J, Haidamak T, Bastien G, Sechovský V, Hickey A J, Mancera-Ugarte M J, Benjamin S, Graf D E, Skourski Y, Lonzarich G G, Vališka M, Grosche F M, Eaton A G 2024 Proc. Natl. Acad. Sci. U. S. A. 121 e2403067121Google Scholar

    [54]

    Aoki D 2024 J. Phys. Soc. Jpn. 93 043703Google Scholar

    [55]

    Tokiwa Y, Sakai H, Kambe S, Opletal P, Yamamoto E, Kimata M, Awaji S, Sasaki T, Yanase Y, Haga Y, Tokunaga Y 2023 Phys. Rev. B 108 144502Google Scholar

  • [1] 杨金颖, 王彬彬, 刘恩克. 磁性拓扑材料中贝利曲率驱动的非常规电输运行为. 物理学报, doi: 10.7498/aps.72.20230995
    [2] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, doi: 10.7498/aps.71.20220388
    [3] 邱航强, 谢晓萌, 刘艺, 李玉科, 许晓峰, 焦文鹤. 三元钯基碲化物的单晶生长和电输运性质. 物理学报, doi: 10.7498/aps.71.20221034
    [4] 李建新. 自旋涨落与非常规超导配对. 物理学报, doi: 10.7498/aps.70.20202180
    [5] 胡江平. 探索非常规高温超导体. 物理学报, doi: 10.7498/aps.70.20202122
    [6] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, doi: 10.7498/aps.67.20181818
    [7] 程金光. 高压调控的磁性量子临界点和非常规超导电性. 物理学报, doi: 10.7498/aps.66.037401
    [8] 杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎. 铁基超导体FeSe0.5Te0.5表面隧道谱的研究. 物理学报, doi: 10.7498/aps.64.097401
    [9] 朱顺明, 顾然, 黄时敏, 姚峥嵘, 张阳, 陈斌, 毛昊源, 顾书林, 叶建东, 郑有炓. 金属有机源化学气相沉积法生长氧化锌薄膜中氢气的作用及其机理. 物理学报, doi: 10.7498/aps.63.118103
    [10] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, doi: 10.7498/aps.56.6705
    [11] 曾春来, 唐东升, 刘星辉, 海 阔, 羊 亿, 袁华军, 解思深. 化学气相沉积法中SnO2一维纳米结构的控制生长. 物理学报, doi: 10.7498/aps.56.6531
    [12] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼. 物理学报, doi: 10.7498/aps.53.4410
    [13] 张永健, 陈仙辉, 陈兆甲, 曹烈兆, 戚伯云. Bi-1212相和Bi-1222相铜氧化合物的合成和超导电性. 物理学报, doi: 10.7498/aps.44.922
    [14] 杨碚芳, M. J. G. LEE, J. M. PERZ, 许存义, 左健, 汪良斌, 阮耀钟, 张裕恒. 掺Ba对Bi系2212相超导电性的影响. 物理学报, doi: 10.7498/aps.43.308
    [15] 陈仙辉, 陈祖耀, 钱逸泰, 顾震天, 程香爱, 沙健, 王克勤, 张其瑞. (Bi,Pb)-Sr-Ca-Cu-O体系110K超导体的相转变及超导电性. 物理学报, doi: 10.7498/aps.40.297
    [16] 夏健生, 曹烈兆, 徐成, 王顺喜, 陈健, 陈祖耀, 张其瑞. (Bi,Pb)4Ca3Sr3Cu4Oy系统的超导电性与相结构的关联. 物理学报, doi: 10.7498/aps.38.1026
    [17] 梁敬魁, 张玉苓, 黄久齐, 解思琛, 车广灿, 成向荣, 倪永明, 郑东宁, 贾顺莲. 新系列超导相TlBaCan-1CunO2n+2.5(n=2,3)的晶体结构和超导电性. 物理学报, doi: 10.7498/aps.38.264
    [18] 曹效文;赵典锋;张裕恒. 非晶态InSb及其亚稳中间相的霍耳效应和超导电性. 物理学报, doi: 10.7498/aps.36.1041
    [19] 王炜, 余正, 孙元善, 姚希贤. 二维颗粒膜超导电性. 物理学报, doi: 10.7498/aps.35.1081
    [20] 朱宰万, 姜文植. 金属氢高温超导电性. 物理学报, doi: 10.7498/aps.30.271
计量
  • 文章访问数:  400
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-25
  • 修回日期:  2025-02-06
  • 上网日期:  2025-02-21

/

返回文章
返回