搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三元钯基碲化物的单晶生长和电输运性质

邱航强 谢晓萌 刘艺 李玉科 许晓峰 焦文鹤

引用本文:
Citation:

三元钯基碲化物的单晶生长和电输运性质

邱航强, 谢晓萌, 刘艺, 李玉科, 许晓峰, 焦文鹤

Crystal growth and electronic transport property of ternary Pd-based tellurides

Qiu Hang-Qiang, Xie Xiao-Meng, Liu Yi, Li Yu-Ke, Xu Xiao-Feng, Jiao Wen-He
PDF
HTML
导出引用
  • 三元过渡金属硫属化物是一类兼具低维结构和强关联电子的系列化合物, 依其不同构成呈现出丰富多彩的电子基态. 在硫属元素(S, Se, Te)中, Te具有比S和Se更小的电负性和更大的原子质量, 因而过渡金属碲化物呈现出与硫化物和硒化物不同的晶体结构、电子结构和物理性质. 三元过渡金属碲化物中陆续被发现新超导体Ta4Pd3Te16和Ta3Pd3Te14, 拓扑狄拉克半金属TaTMTe5 (TM=Pd, Pt, Ni)等, 进一步拓展了碲化物家族的物性研究, 为该材料体系的潜在应用探究奠定了基础. 本文首先介绍了利用自助熔剂法和化学气相输运法生长4种三元钯基碲化物(Ta4Pd3Te16, Ta3Pd3Te14, TaPdTe5和Ta2Pd3Te5)单晶的详细方案, 并给出了化学气相输运法生长Ta2Pd3Te5的化学反应方程式. 生长出的Ta4Pd3Te16和Ta3Pd3Te14晶体的超导转变宽度仅分别为0.57 K和0.13 K, 通过电阻数据拟合, 得到了拓扑绝缘体Ta2Pd3Te5晶体的能隙值为23.37 meV. 最后, 本文对利用自助熔剂法生长上述4种三元钯基碲化物晶体的生长条件和规律进行了对比分析和讨论, 可以为采用类似方法生长其他过渡金属碲化物晶体提供启发和借鉴.
    Ternary transition-metal chalcogenides are a series of compounds that possess both low-dimensional structures and correlated electrons, and display rich electronic ground states, depending on their different compositions. Among the chalcogen (S, Se, Te), Te has lower electronegativity and heavier atomic mass than S and Se. Thus, transition-metal tellurides take on distinct crystal structures, electronic structures and physical properties. In recent years, we have successively discovered novel superconductors Ta4Pd3Te16 and Ta3Pd3Te14, topological Dirac semimetals TaTMTe5 (TM = Pd, Pt, Ni),etc., further expanding the investigations of physical properties of the family of tellurides and laying a foundation for exploring their potential applications . The basis of further investigating and exploring the potential applications is the obtaining of the high-quality crystals with large dimensions. In this work, we first introduce the whole procedures of the single-crystal growth in growing the four ternary Pd-based tellurides (Ta4Pd3Te16, Ta3Pd3Te14, TaPdTe5, and Ta2Pd3Te5) by employing the self-flux method and chemical vapor transport method, and then give the chemical reaction equations in chemical vapor transport. The superconducting transition width of the Ta4Pd3Te16 crystal and Ta3Pd3Te14 crystal are as small as 0.57 K and 0.13 K, respectively, and by fitting the temperature-dependent resistivity of the topological insulator Ta2Pd3Te5, the band gap is derived to be 23.37 meV. Finally, we comparatively analyse the crystal-growth processes of the four ternary Pd-based tellurides by employing the flux method, which can provide the inspiration and reference for growing the crystals of other transition-metal tellurides by employing the similar methods.
      通信作者: 焦文鹤, whjiao@zjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974061, U1932155)和浙江省自然科学基金(批准号: LY19A040002)资助的课题.
      Corresponding author: Jiao Wen-He, whjiao@zjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974061, U1932155) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY19A040002).
    [1]

    Revolinsky E, Spiering G A, Beerntsen D J 1965 J. Phys. Chem. Solids 26 1029Google Scholar

    [2]

    Gamble F R, DiSalvo F J, Klemm R A, Geballe T H 1970 Science 168 568Google Scholar

    [3]

    Morris R C, Coleman R V, Bhandari R 1972 Phys. Rev. B 5 895Google Scholar

    [4]

    Guillamón I, Suderow H, Rodrigo J G, Vieira S, Rodiere P, Cario L, Navarro-Moratalla E, Martí-Gastaldo C, Coronado E 2011 New J. Phys. 13 103020Google Scholar

    [5]

    Moncton D E, Axe J D, DiSalvo F J 1975 Phys. Rev. Lett. 34 734Google Scholar

    [6]

    Wilson J A, Di Salvo F J, Mahajan S 1974 Phys. Rev. Lett. 32 882Google Scholar

    [7]

    Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205Google Scholar

    [8]

    Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S A, Zhu Z, Alshareef H N, Zhang X X 2017 Nat. Commun. 8 1Google Scholar

    [9]

    Deng K, Wan G L, Deng P, et al. 2016 Nat. Phys. 12 1105Google Scholar

    [10]

    Freitas D C, Rodière P, Osorio M R, et al. 2016 Phys. Rev. B 93 184512Google Scholar

    [11]

    Malliakas C D, Kanatzidis M G 2013 J. Am. Chem. Soc. 135 1719Google Scholar

    [12]

    Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [13]

    Wu S F, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 359 76Google Scholar

    [14]

    Pell M A, Ibers J A 1997 Chem. Ber. 130 1Google Scholar

    [15]

    Mitchell K, Ibers J A 2002 Chem. Rev. 102 1929Google Scholar

    [16]

    Zhang Q, Li G, Rhodes D, Kiswandhi A, Besara T, Zeng B, Sun J, Siegrist T, Johannes M D, Balicas L 2013 Sci. Rep. 3 1Google Scholar

    [17]

    Lu Y F, Takayama T, Bangura A F, Katsura Y, Hashizume D, Takagi H 2014 J. Phys. Soc. Jpn. 83 023702Google Scholar

    [18]

    Khim S, Lee B, Choi K Y, Jeon B G, Jang D H, Patil D, Patil S, Kim R, Choi E S, Lee S, Yu J, Kim K H 2013 New J. Phys. 15 123031Google Scholar

    [19]

    Niu C Q, Yang J H, Li Y K, Chen B, Zhou N, Chen J, Jiang L L, Chen B, Yang X X, Cao C, Dai J H, Xu X F 2013 Phys. Rev. B 88 104507Google Scholar

    [20]

    Zhang Q R, Rhodes D, Zeng B, Besara T, Siegrist T, Johannes M D, Balicas L 2013 Phys. Rev. B 88 024508Google Scholar

    [21]

    Yu H Y, Zuo M, Zhang L, Tan S, Zhang C J, Zhang Y H 2013 J. Am. Chem. Soc. 135 12987Google Scholar

    [22]

    Jiao W H, Tang Z T, Sun Y L, Liu Y, Tao Q, Feng C M, Zeng Y W, Xu Z A, Cao G H 2014 J. Am. Chem. Soc. 136 1284Google Scholar

    [23]

    Jiao W H, He L P, Liu Y, Xu X F, Li Y K, Zhang C H, Zhou N, Xu Z A, Li S Y, Cao G H 2016 Sci. Rep. 6 1Google Scholar

    [24]

    Jiao W H, Xie X M, Liu Y, Xu X F, Li B, Xu C Q, Liu J Y, Zhou W, Li Y K, Yang H Y, Jiang S, Luo Y K, Zhu Z W, Cao G H 2020 Phys. Rev. B 102 075141Google Scholar

    [25]

    Jiao W H, Xiao S Z, Li B, Xu C Q, Xie X M, Qiu H Q, Xu X F, Liu Y, Song S J, Zhou W, Zhai H F, Ke X, He S L, Cao G H 2021 Phys. Rev. B 103 125150Google Scholar

    [26]

    Xu C Q, Liu Y, Cai P G, Li B, Jiao W H, Li Y L, Zhang J Y, Zhou W, Qian B, Jiang X F, Shi Z X, Sankar R, Zhang J L, Yang F, Zhu Z W, Biswas P, Qian D, Ke X L, Xu X F 2020 The J. Phys. Chem. Lett. 11 7782Google Scholar

    [27]

    Elwell D, Scheel H J, Kaldis E 1976 J. Electrochem. Soc. 123 319CGoogle Scholar

    [28]

    Binnewies M, Glaum R, Schmidt M, Schmidt P 2013 Z. Anorg. All. Chem. 639 219Google Scholar

    [29]

    Mar A, Ibers J A 1991 J. Chem. Soc. Dalton Trans. 639

    [30]

    Liimatta E W, Ibers J A 1989 J. Solid State Chem. 78 7

    [31]

    Tremel W 1993 Angew. Chem. Int. Ed. 32 1752

    [32]

    Zhao X M, Zhang K, Cao Z Y, Zhao Z W, Struzhkin V V, Goncharov A F, Wang H K, Gavriliuk A G, Mao H K, Chen X J 2020 Phys. Rev. B 101 134506Google Scholar

    [33]

    Wang X G, Geng D Y, Yan D Y, et al. 2021 Phys. Rev. B 104 L241408Google Scholar

    [34]

    Higashihara N, Okamoto Y, Yoshikawa Y, Yamakawa Y, Takatsu H, Kageyama H, Takenaka K 2021 J. Phys. Soc. Jpn. 90 063705Google Scholar

    [35]

    Shahi P, Singh D J, Sun J P, Zhao L X, Chen G F, Lv Y Y, Li J, Yan J Q, Mandrus D G, Cheng J G 2018 Phys. Rev. X 8 021055Google Scholar

    [36]

    Kumar N, Guin S N, Manna K, Shekhar C, Felser C 2021 Chem. Rev. 121 2780Google Scholar

    [37]

    Yoo Y, DeGregorio Z P, Su Y, Koester S J, Johns J E 2017 Adv. Mater. 29 1605461Google Scholar

    [38]

    Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H 2015 Science 349 625Google Scholar

    [39]

    Kim H, Johns J E, Yoo Y 2020 Small 16 2002849Google Scholar

    [40]

    Brown B E 1966 Acta Crystallogr. 20 264Google Scholar

  • 图 1  晶体生长法略图和生长出的单晶照片 (a)助熔剂法; (b)化学气相输运法; (c) Ta4Pd3Te16; (d) Ta3Pd3Te14; (e) TaPdTe5; (f) Ta2Pd3Te5

    Fig. 1.  Schematic diagrams of the employed methods of crystal growth and the photographs of the as-grown crystals: (a) Flux method; (b)CVT method; (c) Ta4Pd3Te16; (d) Ta3Pd3Te14; (e) TaPdTe5; (f) Ta2Pd3Te5.

    图 2  (a)三元钯基碲化物单晶的X射线衍射图谱; (b)沿链方向的单个原子层投影图

    Fig. 2.  (a) XRD patterns and (b)projection view of one atomic layers of the corresponding ternary Pd-based tellurides.

    图 3  三元钯基碲化物晶体沿链方向的电阻率-温度关系图 (a) Ta4Pd3Te16; (b) Ta3Pd3Te14; (c) TaPdTe5; (d) Ta2Pd3Te5

    Fig. 3.  Temperature dependence of the electronic resistivity along the chain direction for ternary Pd-based tellurides: (a) Ta4Pd3Te16; (b) Ta3Pd3Te14; (c) TaPdTe5; (d) Ta2Pd3Te5.

    图 4  自助熔剂法生长三元钯基碲化物单晶的(a)配料摩尔比和(b)温度设定程序

    Fig. 4.  (a) The Molar ratio and (b) temperature setting procedures employed in growing the single crystals of ternary Pd-based tellurides by self-flux method.

    图 5  以摩尔比Ta∶Pd∶Te = 2∶4.5∶7.5配料和图4(b)红线所示温度程序运行后晶体的EDS谱图, 插图为显微镜下的晶体照片

    Fig. 5.  EDS spectrum of the single crystal grown with nominal molar ratio Ta∶Pd∶Te = 2∶4.5∶7.5 and heating procedure as shown by the red line plotted in Fig. 4(b). The inset shows the photograph of the as-grown crystals.

    表 1  四种单晶样品的元素组成

    Table 1.  Element composition of the four kinds of single crystals.

    SampleTa content/%Pd content/%Te content/%
    Ta4Pd3Te1616.4011.9771.63
    Ta3Pd3Te1414.2913.6772.04
    TaPdTe512.5212.1775.31
    Ta2Pd3Te519.5731.5148.92
    下载: 导出CSV

    表 2  三元Pd基碲化物的晶体参数

    Table 2.  Crystal parameters of ternary Pd-based tellurides.

    CompoundSpace groupabcβ/(°)IS/Å
    (Calculated)
    IS/Å (XRD)Ref.
    Ta4Pd3Te16I2/m17.687(4)3.735(1)19.510(4)110.42(1)6.503(5)6.529(6)[29]
    Ta3Pd3Te14P21/m14.088(2)3.737(3)20.560(2)103.73(5)6.397(1)6.418(8)[30]
    TaPdTe5Cmcm3.693(4)13.274(0)15.602(0)6.637(0)6.629(8)[24]
    Ta2Pd3Te5Cmcm13.989(3)3.713(1)18.630(4)6.994(7)6.975(9)[31]
    下载: 导出CSV
  • [1]

    Revolinsky E, Spiering G A, Beerntsen D J 1965 J. Phys. Chem. Solids 26 1029Google Scholar

    [2]

    Gamble F R, DiSalvo F J, Klemm R A, Geballe T H 1970 Science 168 568Google Scholar

    [3]

    Morris R C, Coleman R V, Bhandari R 1972 Phys. Rev. B 5 895Google Scholar

    [4]

    Guillamón I, Suderow H, Rodrigo J G, Vieira S, Rodiere P, Cario L, Navarro-Moratalla E, Martí-Gastaldo C, Coronado E 2011 New J. Phys. 13 103020Google Scholar

    [5]

    Moncton D E, Axe J D, DiSalvo F J 1975 Phys. Rev. Lett. 34 734Google Scholar

    [6]

    Wilson J A, Di Salvo F J, Mahajan S 1974 Phys. Rev. Lett. 32 882Google Scholar

    [7]

    Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205Google Scholar

    [8]

    Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S A, Zhu Z, Alshareef H N, Zhang X X 2017 Nat. Commun. 8 1Google Scholar

    [9]

    Deng K, Wan G L, Deng P, et al. 2016 Nat. Phys. 12 1105Google Scholar

    [10]

    Freitas D C, Rodière P, Osorio M R, et al. 2016 Phys. Rev. B 93 184512Google Scholar

    [11]

    Malliakas C D, Kanatzidis M G 2013 J. Am. Chem. Soc. 135 1719Google Scholar

    [12]

    Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [13]

    Wu S F, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 359 76Google Scholar

    [14]

    Pell M A, Ibers J A 1997 Chem. Ber. 130 1Google Scholar

    [15]

    Mitchell K, Ibers J A 2002 Chem. Rev. 102 1929Google Scholar

    [16]

    Zhang Q, Li G, Rhodes D, Kiswandhi A, Besara T, Zeng B, Sun J, Siegrist T, Johannes M D, Balicas L 2013 Sci. Rep. 3 1Google Scholar

    [17]

    Lu Y F, Takayama T, Bangura A F, Katsura Y, Hashizume D, Takagi H 2014 J. Phys. Soc. Jpn. 83 023702Google Scholar

    [18]

    Khim S, Lee B, Choi K Y, Jeon B G, Jang D H, Patil D, Patil S, Kim R, Choi E S, Lee S, Yu J, Kim K H 2013 New J. Phys. 15 123031Google Scholar

    [19]

    Niu C Q, Yang J H, Li Y K, Chen B, Zhou N, Chen J, Jiang L L, Chen B, Yang X X, Cao C, Dai J H, Xu X F 2013 Phys. Rev. B 88 104507Google Scholar

    [20]

    Zhang Q R, Rhodes D, Zeng B, Besara T, Siegrist T, Johannes M D, Balicas L 2013 Phys. Rev. B 88 024508Google Scholar

    [21]

    Yu H Y, Zuo M, Zhang L, Tan S, Zhang C J, Zhang Y H 2013 J. Am. Chem. Soc. 135 12987Google Scholar

    [22]

    Jiao W H, Tang Z T, Sun Y L, Liu Y, Tao Q, Feng C M, Zeng Y W, Xu Z A, Cao G H 2014 J. Am. Chem. Soc. 136 1284Google Scholar

    [23]

    Jiao W H, He L P, Liu Y, Xu X F, Li Y K, Zhang C H, Zhou N, Xu Z A, Li S Y, Cao G H 2016 Sci. Rep. 6 1Google Scholar

    [24]

    Jiao W H, Xie X M, Liu Y, Xu X F, Li B, Xu C Q, Liu J Y, Zhou W, Li Y K, Yang H Y, Jiang S, Luo Y K, Zhu Z W, Cao G H 2020 Phys. Rev. B 102 075141Google Scholar

    [25]

    Jiao W H, Xiao S Z, Li B, Xu C Q, Xie X M, Qiu H Q, Xu X F, Liu Y, Song S J, Zhou W, Zhai H F, Ke X, He S L, Cao G H 2021 Phys. Rev. B 103 125150Google Scholar

    [26]

    Xu C Q, Liu Y, Cai P G, Li B, Jiao W H, Li Y L, Zhang J Y, Zhou W, Qian B, Jiang X F, Shi Z X, Sankar R, Zhang J L, Yang F, Zhu Z W, Biswas P, Qian D, Ke X L, Xu X F 2020 The J. Phys. Chem. Lett. 11 7782Google Scholar

    [27]

    Elwell D, Scheel H J, Kaldis E 1976 J. Electrochem. Soc. 123 319CGoogle Scholar

    [28]

    Binnewies M, Glaum R, Schmidt M, Schmidt P 2013 Z. Anorg. All. Chem. 639 219Google Scholar

    [29]

    Mar A, Ibers J A 1991 J. Chem. Soc. Dalton Trans. 639

    [30]

    Liimatta E W, Ibers J A 1989 J. Solid State Chem. 78 7

    [31]

    Tremel W 1993 Angew. Chem. Int. Ed. 32 1752

    [32]

    Zhao X M, Zhang K, Cao Z Y, Zhao Z W, Struzhkin V V, Goncharov A F, Wang H K, Gavriliuk A G, Mao H K, Chen X J 2020 Phys. Rev. B 101 134506Google Scholar

    [33]

    Wang X G, Geng D Y, Yan D Y, et al. 2021 Phys. Rev. B 104 L241408Google Scholar

    [34]

    Higashihara N, Okamoto Y, Yoshikawa Y, Yamakawa Y, Takatsu H, Kageyama H, Takenaka K 2021 J. Phys. Soc. Jpn. 90 063705Google Scholar

    [35]

    Shahi P, Singh D J, Sun J P, Zhao L X, Chen G F, Lv Y Y, Li J, Yan J Q, Mandrus D G, Cheng J G 2018 Phys. Rev. X 8 021055Google Scholar

    [36]

    Kumar N, Guin S N, Manna K, Shekhar C, Felser C 2021 Chem. Rev. 121 2780Google Scholar

    [37]

    Yoo Y, DeGregorio Z P, Su Y, Koester S J, Johns J E 2017 Adv. Mater. 29 1605461Google Scholar

    [38]

    Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H 2015 Science 349 625Google Scholar

    [39]

    Kim H, Johns J E, Yoo Y 2020 Small 16 2002849Google Scholar

    [40]

    Brown B E 1966 Acta Crystallogr. 20 264Google Scholar

  • [1] 牛佳林, 董思远, 魏永星, 靳长清, 南瑞华, 杨斌. 助溶剂法生长的AgNbO3晶体相转变特征、电学和光学性能. 物理学报, 2024, 73(3): 038101. doi: 10.7498/aps.73.20230984
    [2] 董晓莉, 金魁, 袁洁, 周放, 张广铭, 赵忠贤. FeSe基超导单晶与薄膜研究新进展:自旋向列序、电子相分离及高临界参数. 物理学报, 2018, 67(20): 207410. doi: 10.7498/aps.67.20181638
    [3] 牟刚, 马永辉. 铁基超导1111体系CaFeAsF的单晶生长和物性研究. 物理学报, 2018, 67(17): 177401. doi: 10.7498/aps.67.20181371
    [4] 于佳, 刘通, 赵康, 潘伯津, 穆青隔, 阮彬彬, 任治安. 112型铁基化合物EuFeAs2的单晶生长与表征. 物理学报, 2018, 67(20): 207403. doi: 10.7498/aps.67.20181393
    [5] 伊长江, 王乐, 冯子力, 杨萌, 闫大禹, 王翠香, 石友国. 拓扑半金属材料的单晶生长研究进展. 物理学报, 2018, 67(12): 128102. doi: 10.7498/aps.67.20180796
    [6] 尹剑, 陈绍华, 温成伟, 夏立东, 李海容, 黄鑫, 余铭铭, 梁建华, 彭述明. 玻璃微球内氘结晶行为研究. 物理学报, 2015, 64(1): 015202. doi: 10.7498/aps.64.015202
    [7] 朱顺明, 顾然, 黄时敏, 姚峥嵘, 张阳, 陈斌, 毛昊源, 顾书林, 叶建东, 郑有炓. 金属有机源化学气相沉积法生长氧化锌薄膜中氢气的作用及其机理. 物理学报, 2014, 63(11): 118103. doi: 10.7498/aps.63.118103
    [8] 吴亮亮, 赵德刚, 李亮, 乐伶聪, 陈平, 刘宗顺, 江德生. 金属有机化学气相沉积法生长条件对AlN薄膜面内晶粒尺寸的影响. 物理学报, 2013, 62(8): 086102. doi: 10.7498/aps.62.086102
    [9] 杨帆, 马瑾, 孔令沂, 栾彩娜, 朱振. 金属有机物化学气相沉积法生长Ga2(1-x)In2xO3薄膜的结构及光电性能研究. 物理学报, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [10] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [11] 曾春来, 唐东升, 刘星辉, 海 阔, 羊 亿, 袁华军, 解思深. 化学气相沉积法中SnO2一维纳米结构的控制生长. 物理学报, 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
    [12] 赵立竹, 申猛燕, 後藤武生. 气相法生长N-salicylideneaniline单晶及其偏振特性. 物理学报, 2001, 50(8): 1540-1544. doi: 10.7498/aps.50.1540
    [13] 徐政, 赵小如, 吴文彬, 孙学峰, 周贵恩, 李晓光, 张裕恒. 用自助熔剂法生长Bi2Sr2CaCu2Oy单晶的特点. 物理学报, 1996, 45(9): 1562-1569. doi: 10.7498/aps.45.1562
    [14] 余朝文, 何丕模, 徐亚伯, 齐仲甫, 李文铸. 单温度梯度气相法生长C70单晶. 物理学报, 1995, 44(3): 488-491. doi: 10.7498/aps.44.488
    [15] 王幼文, 许宇庆, 丁予上, 姚鸿年. 化学汽相沉积法生长微晶过程中的旋涡现象. 物理学报, 1992, 41(10): 1627-1631. doi: 10.7498/aps.41.1627
    [16] 葛传珍, 徐秀英, 冯端. 直拉法生长Y3Al5O12(YAG)单晶体中的位错和包裹物. 物理学报, 1982, 31(3): 415-418. doi: 10.7498/aps.31.415
    [17] 葛传珍, 徐秀英, 冯端. 直拉法生长的YAG单晶体中组分过冷引起的针状应力区和位错. 物理学报, 1981, 30(2): 218-223. doi: 10.7498/aps.30.218
    [18] 闵乃本, 洪静芬, 孙政民, 杨永顺. 直拉法LiNbO3单晶体中的旋转生长条纹. 物理学报, 1981, 30(12): 1672-1675. doi: 10.7498/aps.30.1672
    [19] 刘寄浙, 金通政, 刘公强. GGG单晶的助熔生长与成核温度的确定. 物理学报, 1980, 29(1): 117-121. doi: 10.7498/aps.29.117
    [20] 邓朝德, 邵式平, 梁宏林. 溶剂变更法生长的TGS单晶的介电和热电性能. 物理学报, 1980, 29(3): 389-391. doi: 10.7498/aps.29.389
计量
  • 文章访问数:  5210
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 修回日期:  2022-07-20
  • 上网日期:  2022-11-04
  • 刊出日期:  2022-11-20

/

返回文章
返回