-
三元过渡金属硫属化物是一类兼具低维结构和强关联电子的系列化合物, 依其不同构成呈现出丰富多彩的电子基态. 在硫属元素(S, Se, Te)中, Te具有比S和Se更小的电负性和更大的原子质量, 因而过渡金属碲化物呈现出与硫化物和硒化物不同的晶体结构、电子结构和物理性质. 三元过渡金属碲化物中陆续被发现新超导体Ta4Pd3Te16和Ta3Pd3Te14, 拓扑狄拉克半金属TaTMTe5 (TM=Pd, Pt, Ni)等, 进一步拓展了碲化物家族的物性研究, 为该材料体系的潜在应用探究奠定了基础. 本文首先介绍了利用自助熔剂法和化学气相输运法生长4种三元钯基碲化物(Ta4Pd3Te16, Ta3Pd3Te14, TaPdTe5和Ta2Pd3Te5)单晶的详细方案, 并给出了化学气相输运法生长Ta2Pd3Te5的化学反应方程式. 生长出的Ta4Pd3Te16和Ta3Pd3Te14晶体的超导转变宽度仅分别为0.57 K和0.13 K, 通过电阻数据拟合, 得到了拓扑绝缘体Ta2Pd3Te5晶体的能隙值为23.37 meV. 最后, 本文对利用自助熔剂法生长上述4种三元钯基碲化物晶体的生长条件和规律进行了对比分析和讨论, 可以为采用类似方法生长其他过渡金属碲化物晶体提供启发和借鉴.Ternary transition-metal chalcogenides are a series of compounds that possess both low-dimensional structures and correlated electrons, and display rich electronic ground states, depending on their different compositions. Among the chalcogen (S, Se, Te), Te has lower electronegativity and heavier atomic mass than S and Se. Thus, transition-metal tellurides take on distinct crystal structures, electronic structures and physical properties. In recent years, we have successively discovered novel superconductors Ta4Pd3Te16 and Ta3Pd3Te14, topological Dirac semimetals TaTMTe5 (TM = Pd, Pt, Ni),etc., further expanding the investigations of physical properties of the family of tellurides and laying a foundation for exploring their potential applications . The basis of further investigating and exploring the potential applications is the obtaining of the high-quality crystals with large dimensions. In this work, we first introduce the whole procedures of the single-crystal growth in growing the four ternary Pd-based tellurides (Ta4Pd3Te16, Ta3Pd3Te14, TaPdTe5, and Ta2Pd3Te5) by employing the self-flux method and chemical vapor transport method, and then give the chemical reaction equations in chemical vapor transport. The superconducting transition width of the Ta4Pd3Te16 crystal and Ta3Pd3Te14 crystal are as small as 0.57 K and 0.13 K, respectively, and by fitting the temperature-dependent resistivity of the topological insulator Ta2Pd3Te5, the band gap is derived to be 23.37 meV. Finally, we comparatively analyse the crystal-growth processes of the four ternary Pd-based tellurides by employing the flux method, which can provide the inspiration and reference for growing the crystals of other transition-metal tellurides by employing the similar methods.
-
Keywords:
- ternary Pd-based telluride /
- crystal growth /
- flux method /
- chemical vapor transport method
[1] Revolinsky E, Spiering G A, Beerntsen D J 1965 J. Phys. Chem. Solids 26 1029Google Scholar
[2] Gamble F R, DiSalvo F J, Klemm R A, Geballe T H 1970 Science 168 568Google Scholar
[3] Morris R C, Coleman R V, Bhandari R 1972 Phys. Rev. B 5 895Google Scholar
[4] Guillamón I, Suderow H, Rodrigo J G, Vieira S, Rodiere P, Cario L, Navarro-Moratalla E, Martí-Gastaldo C, Coronado E 2011 New J. Phys. 13 103020Google Scholar
[5] Moncton D E, Axe J D, DiSalvo F J 1975 Phys. Rev. Lett. 34 734Google Scholar
[6] Wilson J A, Di Salvo F J, Mahajan S 1974 Phys. Rev. Lett. 32 882Google Scholar
[7] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205Google Scholar
[8] Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S A, Zhu Z, Alshareef H N, Zhang X X 2017 Nat. Commun. 8 1Google Scholar
[9] Deng K, Wan G L, Deng P, et al. 2016 Nat. Phys. 12 1105Google Scholar
[10] Freitas D C, Rodière P, Osorio M R, et al. 2016 Phys. Rev. B 93 184512Google Scholar
[11] Malliakas C D, Kanatzidis M G 2013 J. Am. Chem. Soc. 135 1719Google Scholar
[12] Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar
[13] Wu S F, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 359 76Google Scholar
[14] Pell M A, Ibers J A 1997 Chem. Ber. 130 1Google Scholar
[15] Mitchell K, Ibers J A 2002 Chem. Rev. 102 1929Google Scholar
[16] Zhang Q, Li G, Rhodes D, Kiswandhi A, Besara T, Zeng B, Sun J, Siegrist T, Johannes M D, Balicas L 2013 Sci. Rep. 3 1Google Scholar
[17] Lu Y F, Takayama T, Bangura A F, Katsura Y, Hashizume D, Takagi H 2014 J. Phys. Soc. Jpn. 83 023702Google Scholar
[18] Khim S, Lee B, Choi K Y, Jeon B G, Jang D H, Patil D, Patil S, Kim R, Choi E S, Lee S, Yu J, Kim K H 2013 New J. Phys. 15 123031Google Scholar
[19] Niu C Q, Yang J H, Li Y K, Chen B, Zhou N, Chen J, Jiang L L, Chen B, Yang X X, Cao C, Dai J H, Xu X F 2013 Phys. Rev. B 88 104507Google Scholar
[20] Zhang Q R, Rhodes D, Zeng B, Besara T, Siegrist T, Johannes M D, Balicas L 2013 Phys. Rev. B 88 024508Google Scholar
[21] Yu H Y, Zuo M, Zhang L, Tan S, Zhang C J, Zhang Y H 2013 J. Am. Chem. Soc. 135 12987Google Scholar
[22] Jiao W H, Tang Z T, Sun Y L, Liu Y, Tao Q, Feng C M, Zeng Y W, Xu Z A, Cao G H 2014 J. Am. Chem. Soc. 136 1284Google Scholar
[23] Jiao W H, He L P, Liu Y, Xu X F, Li Y K, Zhang C H, Zhou N, Xu Z A, Li S Y, Cao G H 2016 Sci. Rep. 6 1Google Scholar
[24] Jiao W H, Xie X M, Liu Y, Xu X F, Li B, Xu C Q, Liu J Y, Zhou W, Li Y K, Yang H Y, Jiang S, Luo Y K, Zhu Z W, Cao G H 2020 Phys. Rev. B 102 075141Google Scholar
[25] Jiao W H, Xiao S Z, Li B, Xu C Q, Xie X M, Qiu H Q, Xu X F, Liu Y, Song S J, Zhou W, Zhai H F, Ke X, He S L, Cao G H 2021 Phys. Rev. B 103 125150Google Scholar
[26] Xu C Q, Liu Y, Cai P G, Li B, Jiao W H, Li Y L, Zhang J Y, Zhou W, Qian B, Jiang X F, Shi Z X, Sankar R, Zhang J L, Yang F, Zhu Z W, Biswas P, Qian D, Ke X L, Xu X F 2020 The J. Phys. Chem. Lett. 11 7782Google Scholar
[27] Elwell D, Scheel H J, Kaldis E 1976 J. Electrochem. Soc. 123 319CGoogle Scholar
[28] Binnewies M, Glaum R, Schmidt M, Schmidt P 2013 Z. Anorg. All. Chem. 639 219Google Scholar
[29] Mar A, Ibers J A 1991 J. Chem. Soc. Dalton Trans. 639
[30] Liimatta E W, Ibers J A 1989 J. Solid State Chem. 78 7
[31] Tremel W 1993 Angew. Chem. Int. Ed. 32 1752
[32] Zhao X M, Zhang K, Cao Z Y, Zhao Z W, Struzhkin V V, Goncharov A F, Wang H K, Gavriliuk A G, Mao H K, Chen X J 2020 Phys. Rev. B 101 134506Google Scholar
[33] Wang X G, Geng D Y, Yan D Y, et al. 2021 Phys. Rev. B 104 L241408Google Scholar
[34] Higashihara N, Okamoto Y, Yoshikawa Y, Yamakawa Y, Takatsu H, Kageyama H, Takenaka K 2021 J. Phys. Soc. Jpn. 90 063705Google Scholar
[35] Shahi P, Singh D J, Sun J P, Zhao L X, Chen G F, Lv Y Y, Li J, Yan J Q, Mandrus D G, Cheng J G 2018 Phys. Rev. X 8 021055Google Scholar
[36] Kumar N, Guin S N, Manna K, Shekhar C, Felser C 2021 Chem. Rev. 121 2780Google Scholar
[37] Yoo Y, DeGregorio Z P, Su Y, Koester S J, Johns J E 2017 Adv. Mater. 29 1605461Google Scholar
[38] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H 2015 Science 349 625Google Scholar
[39] Kim H, Johns J E, Yoo Y 2020 Small 16 2002849Google Scholar
[40] Brown B E 1966 Acta Crystallogr. 20 264Google Scholar
-
图 1 晶体生长法略图和生长出的单晶照片 (a)助熔剂法; (b)化学气相输运法; (c) Ta4Pd3Te16; (d) Ta3Pd3Te14; (e) TaPdTe5; (f) Ta2Pd3Te5
Fig. 1. Schematic diagrams of the employed methods of crystal growth and the photographs of the as-grown crystals: (a) Flux method; (b)CVT method; (c) Ta4Pd3Te16; (d) Ta3Pd3Te14; (e) TaPdTe5; (f) Ta2Pd3Te5.
表 1 四种单晶样品的元素组成
Table 1. Element composition of the four kinds of single crystals.
Sample Ta content/% Pd content/% Te content/% Ta4Pd3Te16 16.40 11.97 71.63 Ta3Pd3Te14 14.29 13.67 72.04 TaPdTe5 12.52 12.17 75.31 Ta2Pd3Te5 19.57 31.51 48.92 表 2 三元Pd基碲化物的晶体参数
Table 2. Crystal parameters of ternary Pd-based tellurides.
Compound Space group a/Å b/Å c/Å β/(°) IS/Å
(Calculated)IS/Å (XRD) Ref. Ta4Pd3Te16 I2/m 17.687(4) 3.735(1) 19.510(4) 110.42(1) 6.503(5) 6.529(6) [29] Ta3Pd3Te14 P21/m 14.088(2) 3.737(3) 20.560(2) 103.73(5) 6.397(1) 6.418(8) [30] TaPdTe5 Cmcm 3.693(4) 13.274(0) 15.602(0) — 6.637(0) 6.629(8) [24] Ta2Pd3Te5 Cmcm 13.989(3) 3.713(1) 18.630(4) — 6.994(7) 6.975(9) [31] -
[1] Revolinsky E, Spiering G A, Beerntsen D J 1965 J. Phys. Chem. Solids 26 1029Google Scholar
[2] Gamble F R, DiSalvo F J, Klemm R A, Geballe T H 1970 Science 168 568Google Scholar
[3] Morris R C, Coleman R V, Bhandari R 1972 Phys. Rev. B 5 895Google Scholar
[4] Guillamón I, Suderow H, Rodrigo J G, Vieira S, Rodiere P, Cario L, Navarro-Moratalla E, Martí-Gastaldo C, Coronado E 2011 New J. Phys. 13 103020Google Scholar
[5] Moncton D E, Axe J D, DiSalvo F J 1975 Phys. Rev. Lett. 34 734Google Scholar
[6] Wilson J A, Di Salvo F J, Mahajan S 1974 Phys. Rev. Lett. 32 882Google Scholar
[7] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205Google Scholar
[8] Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S A, Zhu Z, Alshareef H N, Zhang X X 2017 Nat. Commun. 8 1Google Scholar
[9] Deng K, Wan G L, Deng P, et al. 2016 Nat. Phys. 12 1105Google Scholar
[10] Freitas D C, Rodière P, Osorio M R, et al. 2016 Phys. Rev. B 93 184512Google Scholar
[11] Malliakas C D, Kanatzidis M G 2013 J. Am. Chem. Soc. 135 1719Google Scholar
[12] Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar
[13] Wu S F, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 359 76Google Scholar
[14] Pell M A, Ibers J A 1997 Chem. Ber. 130 1Google Scholar
[15] Mitchell K, Ibers J A 2002 Chem. Rev. 102 1929Google Scholar
[16] Zhang Q, Li G, Rhodes D, Kiswandhi A, Besara T, Zeng B, Sun J, Siegrist T, Johannes M D, Balicas L 2013 Sci. Rep. 3 1Google Scholar
[17] Lu Y F, Takayama T, Bangura A F, Katsura Y, Hashizume D, Takagi H 2014 J. Phys. Soc. Jpn. 83 023702Google Scholar
[18] Khim S, Lee B, Choi K Y, Jeon B G, Jang D H, Patil D, Patil S, Kim R, Choi E S, Lee S, Yu J, Kim K H 2013 New J. Phys. 15 123031Google Scholar
[19] Niu C Q, Yang J H, Li Y K, Chen B, Zhou N, Chen J, Jiang L L, Chen B, Yang X X, Cao C, Dai J H, Xu X F 2013 Phys. Rev. B 88 104507Google Scholar
[20] Zhang Q R, Rhodes D, Zeng B, Besara T, Siegrist T, Johannes M D, Balicas L 2013 Phys. Rev. B 88 024508Google Scholar
[21] Yu H Y, Zuo M, Zhang L, Tan S, Zhang C J, Zhang Y H 2013 J. Am. Chem. Soc. 135 12987Google Scholar
[22] Jiao W H, Tang Z T, Sun Y L, Liu Y, Tao Q, Feng C M, Zeng Y W, Xu Z A, Cao G H 2014 J. Am. Chem. Soc. 136 1284Google Scholar
[23] Jiao W H, He L P, Liu Y, Xu X F, Li Y K, Zhang C H, Zhou N, Xu Z A, Li S Y, Cao G H 2016 Sci. Rep. 6 1Google Scholar
[24] Jiao W H, Xie X M, Liu Y, Xu X F, Li B, Xu C Q, Liu J Y, Zhou W, Li Y K, Yang H Y, Jiang S, Luo Y K, Zhu Z W, Cao G H 2020 Phys. Rev. B 102 075141Google Scholar
[25] Jiao W H, Xiao S Z, Li B, Xu C Q, Xie X M, Qiu H Q, Xu X F, Liu Y, Song S J, Zhou W, Zhai H F, Ke X, He S L, Cao G H 2021 Phys. Rev. B 103 125150Google Scholar
[26] Xu C Q, Liu Y, Cai P G, Li B, Jiao W H, Li Y L, Zhang J Y, Zhou W, Qian B, Jiang X F, Shi Z X, Sankar R, Zhang J L, Yang F, Zhu Z W, Biswas P, Qian D, Ke X L, Xu X F 2020 The J. Phys. Chem. Lett. 11 7782Google Scholar
[27] Elwell D, Scheel H J, Kaldis E 1976 J. Electrochem. Soc. 123 319CGoogle Scholar
[28] Binnewies M, Glaum R, Schmidt M, Schmidt P 2013 Z. Anorg. All. Chem. 639 219Google Scholar
[29] Mar A, Ibers J A 1991 J. Chem. Soc. Dalton Trans. 639
[30] Liimatta E W, Ibers J A 1989 J. Solid State Chem. 78 7
[31] Tremel W 1993 Angew. Chem. Int. Ed. 32 1752
[32] Zhao X M, Zhang K, Cao Z Y, Zhao Z W, Struzhkin V V, Goncharov A F, Wang H K, Gavriliuk A G, Mao H K, Chen X J 2020 Phys. Rev. B 101 134506Google Scholar
[33] Wang X G, Geng D Y, Yan D Y, et al. 2021 Phys. Rev. B 104 L241408Google Scholar
[34] Higashihara N, Okamoto Y, Yoshikawa Y, Yamakawa Y, Takatsu H, Kageyama H, Takenaka K 2021 J. Phys. Soc. Jpn. 90 063705Google Scholar
[35] Shahi P, Singh D J, Sun J P, Zhao L X, Chen G F, Lv Y Y, Li J, Yan J Q, Mandrus D G, Cheng J G 2018 Phys. Rev. X 8 021055Google Scholar
[36] Kumar N, Guin S N, Manna K, Shekhar C, Felser C 2021 Chem. Rev. 121 2780Google Scholar
[37] Yoo Y, DeGregorio Z P, Su Y, Koester S J, Johns J E 2017 Adv. Mater. 29 1605461Google Scholar
[38] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H 2015 Science 349 625Google Scholar
[39] Kim H, Johns J E, Yoo Y 2020 Small 16 2002849Google Scholar
[40] Brown B E 1966 Acta Crystallogr. 20 264Google Scholar
计量
- 文章访问数: 5210
- PDF下载量: 146
- 被引次数: 0