-
溶液法是生长低缺陷高品质碳化硅(SiC)单晶的重要方法,针对6英寸溶液法生长SiC单晶系统,建立了感应加热和热质传递全局数值分析模型,考虑了洛伦兹力、离心力、热浮力以及表面张力对溶液流动的耦合作用,研究了晶体旋转对溶液中速度场、温度场、碳浓度场、晶体生长速率以及坩埚壁面碳溶解析出的影响规律。结果表明,溶液中洛伦兹力的存在使得低晶体转速下的流场十分复杂,晶体转速需要控制在合适的范围内,使得生长界面下方由输运决定的碳浓度分布与生长界面处由温度决定的碳浓度分布相协调,才能获得均匀且高的SiC单晶生长速率。晶体转速过小使得SiC单晶生长速率很低,过大导致生长速率径向均匀性下降,转速为25 rpm时SiC单晶的平均生长速率较高且沿径向分布均匀性较好。进一步分析了溶液—坩埚交界面碳组分的溶解和析出,定位了坩埚壁面溶解较快区域和SiC多晶颗粒生成区域,并结合速度场预测了多晶颗粒的去向。研究结果为溶液法生长6英寸SiC单晶提供了科学依据。The top-seeded solution growth (TSSG) method is a critical technique for growing low-defect and high-quality silicon carbide (SiC) single crystals. A comprehensive numerical analysis model including induction heating, heat and mass transfer was developed for the growth of 6-inch SiC single crystals. The coupling effects of Lorentz force, centrifugal force, thermal buoyancy force and surface tension on the solution flow were considered, and the effects of crystal rotation speed on the velocity field, temperature field, carbon concentration field, crystal growth rate and carbon dissolution and precipitation on the crucible wall were systematically investigated. The results indicate that the Lorentz force in the solution results in a more complex flow field at low crystal rotation speeds. The crystal rotation speed should be controlled within the appropriate range to ensure that the carbon concentration distribution beneath the growth interface determined by the transport mode is coordinated with that at the growth interface determined by the temperature, which is beneficial for the uniform and high growth rate of SiC single crystals. Low rotation speeds reduce the growth rate of SiC single crystals, while high rotation speeds lead to a decrease in radial uniformity of growth rate. At the rotation speed of 25 rpm, the average growth rate of SiC single crystals is higher and the radial distribution uniformity is better. Further analysis is conducted on the dissolution and precipitation of carbon at the solution-crucible interface, and the regions where the crucible wall dissolves quickly and where SiC polycrystalline particles are generated are located. The transport directions of polycrystalline particles are predicted based on the velocity field. The research results provide a scientific basis for the growth of 6-inch SiC single crystals by TSSG method.
-
Keywords:
- TSSG /
- Silicon carbide single crystal /
- Crystal rotation /
- Numerical simulation
-
[1] Matsunami H, Kimoto T 1997 Mater. Sci. Eng. R-Rep. 20125
[2] Meyer C, Philip P 2005 Cryst. Growth Des. 51145
[3] Liu D J, Zhou F, Chen S Y, Hu Z L 2023 Acta Phys. Sin. 72267(in Chinese) [刘东静, 周福, 陈帅阳, 胡志亮2023 Acta Phys. Sin. 72267]
[4] Yang N J, Song B, Wang W J, Li H 2022 Crystengcomm 243475
[5] Kimoto T 2016 Prog. Cryst. Growth Charact. Mater. 62329
[6] Xiao S Y, Harada S, Murayama K, Ujihara T 2016 Cryst. Growth Des. 165136
[7] Ujihara T, Maekawa R, Tanaka R, Sasaki K, Kuroda K, Takeda Y 2008 J. Cryst. Growth 3101438
[8] Wang G B, Sheng D, Li H, Zhang Z S, Guo L L, Guo Z N, Yuan W X, Wang W J, Chen X L 2023 Crystengcomm 25560
[9] Umezaki T, Koike D, Horio A, Harada S, Ujihara T 201415th International Conference on Silicon Carbide and Related Materials (ICSCRM) Miyazaki, JAPAN, 2014 p63-66
[10] Dang Y F, Zhu C, Ikumi M, Takaishi M, Yu W C, Huang W, Liu X B, Kutsukake K, Harada S, Tagawa M, Ujihara T 2021 Crystengcomm 231982
[11] Yamamoto T, Okano Y, Ujihara T, Dost S 2017 J. Cryst. Growth 47075
[12] Umezaki T, Koike D, Harada S, Ujihara T 2016 Jpn. J. Appl. Phys. 551256015
[13] Mercier F, Dedulle J M, Chaussende D, Pons M 2010 J. Cryst. Growth 312155
[14] Ha M T, Shin Y J, Lee M H, Kim C J, Jeong S M 2018 Phys. Status Solidi A-Appl. Mat. 21517010179
[15] Kusunoki K, Kishida Y, Seki K 2019 Mater. Sci. Forum (Switzerland) 96385
[16] Ha M T, Shin Y J, Bae S Y, Park S Y, Jeong S M 2019 J. Korean Ceram. Soc. 56589
[17] Su Hun C, Young Gon K, Yun Ji S, Seong Min J, Myung Hyun L, Chae Young L, Jeong Min C, Mi Seon P, Yeon Suk J, Won Jae L 2018 Mater. Sci. Forum (Switzerland) 92427
[18] Liu B T, Yu Y, Tang X, Gao B 2020 J. Cryst. Growth 5331254066
[19] Yoon J Y, Lee M H, Kim Y, Seo W S, Shul Y G, Lee W J, Jeong S M 2017 Jpn. J. Appl. Phys. 560655014
[20] Li F C, He L, Yan Z Y, Qi X F, Ma W C, Chen J L, Xu Y K, Hu Z G 2023 J. Cryst. Growth 6071271127
[21] Sui Z R, Xu L B, Cui C, Wang R, Pi X D, Yang D R, Han X F 2024 Crystengcomm 261022
[22] Fujii K, Takei K, Aoshima M, Senguttuvan N, Hiratani M, Ujihara T, Matsumoto Y, Kato T, Kurashige K, Okumura H 2015 Mater. Sci. Forum (Switzerland) 821-82335
[23] Liu Y H, Li M Y, Yan Z Y, Qi X F, Ma W C, Chen J L, Xu Y K, Hu Z G 2024 J. Cryst. Growth 6431278018
[24] Mercier F, Nishizawa S 20118th European Conference on Silicon Carbide and Related Materials Sundvolden Conf Ctr, Oslo, NORWAY, Aug 29-Sep 02 p32-35
[25] Ariyawong K, Dedulle J M, Chaussende D 201415th International Conference on Silicon Carbide and Related Materials (ICSCRM) Miyazaki, JAPAN, Sep 29-Oct 04 p71-74
[26] Mercier F, Nishizawa S 2013 J. Cryst. Growth 36299
[27] Wang L, Horiuchi T, Sekimoto A, Okano Y, Ujihara T, Dost S 2018 J. Cryst. Growth 498140
[28] Ha M T, Lich L V, Shin Y J, Bae S Y, Lee M H, Jeong S M 2020 Materials 1365110
[29] Wang L, Takehara Y, Sekimoto A, Okano Y, Ujihara T, Dost S 2020 Crystals 1011112
[30] Li Z Y, Yang Y, Wang J L, Luo J P, Liu L J 2024 Proceedings of the 11th International Workshop on Modeling in Crystal Growth, ROMANIA, September 22-25, p573198
[31] Weiss J, Csendes Z J 1982 Ieee Transactions on Power Apparatus and Systems 1013796
[32] Tavakoli M H 2008 Cryst. Growth Des. 8483
[33] Lefebure J, Dedulle J M, Ouisse T, Chaussende D 2012 Cryst. Growth Des. 12909
[34] Liu B T, Yu Y, Tang X, Gao B 2019 J. Cryst. Growth 527125248
[35] Hayashi Y, Mitani T, Komatsu N, Kato T, Okumura H 2019 J. Cryst. Growth 523125151
计量
- 文章访问数: 12
- PDF下载量: 1
- 被引次数: 0