搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高负偏光照稳定性的溶液法像素级IZTO TFT

荆斌 徐萌 彭聪 陈龙龙 张建华 李喜峰

引用本文:
Citation:

高负偏光照稳定性的溶液法像素级IZTO TFT

荆斌, 徐萌, 彭聪, 陈龙龙, 张建华, 李喜峰

Sol-gel indium-zinc-tin-oxide thin film transistor pixel array with superior stabilityunder negative bias illumination stress

Jing Bin, Xu Meng, Peng Cong, Chen Long-Long, Zhang Jian-Hua, Li Xi-Feng
PDF
HTML
导出引用
  • 采用溶液法制备了铟锌锡氧化物(indium-zinc-tin-oxide, IZTO)有源层薄膜和铪铝氧化物(hafnium-aluminum oxide, HAO)绝缘层薄膜, 并成功应用于背沟道刻蚀结构(back-channel etched, BCE)IZTO薄膜晶体管(thin-film transistor, TFT)像素阵列. 利用N2O等离子体表面处理钝化IZTO缺陷态, 提升溶液法像素级IZTO TFT器件性能, 特别是光照负偏压稳定性. 结果表明, 经N2O等离子体处理后, 器件饱和迁移率提升了接近80%, 达到51.52 cm2·V–1·s–1. 特别是3600 s光照负偏压稳定性从–0.3 V提升到–0.1 V, 满足显示驱动的要求. 这进一步说明经N2O等离子体处理后能够得到良好的溶液法像素级IZTO TFT阵列.
    In this paper, we fabricate a back channel etched structure thin film transistor (TFT) pixel array with hafnium-aluminum oxide dielectric and indium-zinc-tin-oxide (IZTO) semiconductor using a solution process. The electrical characteristics of IZTO TFT are modified by N2O plasma treatment. In comparison with the subthreshold swing and saturation mobility of the device untreated by plasma , the subthreshold swing decreases from 204 to 137 mV·dec–1, and the saturation mobility increases from 29.12 to 51.52 cm2·V–1·s–1. Improvement in the mobility and the subthreshold swing (SS) demonstrate that interface states may be passivated by reactive O radicals that are generated by N2O plasma, which is confirmed by the result of X-ray photoelectron spectrum analysis. In addition, the stability of negative bias illumination stress (NBIS) shift is only 0.1V for 3600 s with an illumination intensity of 10000 lux. This result indicates that its superior stability meets the requirements for the display driver. Therefore, N2O plasma treatment is verified to be an effective method to improve device performance and light stability for IZTO TFT pixel array.
      通信作者: 李喜峰, lixifeng@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62174105, 61674101)、上海市学术/技术研究负责人计划(批准号: 18XD1424400)、上海市教育发展基金会和上海市教育委员会(批准号: 18SG38)资助的课题.
      Corresponding author: Li Xi-Feng, lixifeng@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62174105, 61674101), the Program of Academic/Technology Research Leader of Shanghai, China (Grant No. 18XD1424400), the Shanghai Education Development Foundation and Shanghai Municipal Education Commission, CHina (Grant No. 18SG38).
    [1]

    Saito N, Ueda T, Tezuka T, Ikeda K 2018 IEEE J. Electron Devices Soc. 6 1253Google Scholar

    [2]

    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488Google Scholar

    [3]

    Kim J, Park J, Yoon G, Khushabu A, Kim J S, Pae S, Cho E C, Yi J 2020 Mater. Sci. Semicond. Process. 120 105264Google Scholar

    [4]

    Karteri İ, Karataş Ş, Al-Ghamdi A A, Yakuphanoğlu F 2015 Synth. Met. 199 241Google Scholar

    [5]

    Liu X Q, Wang J L, Liao C N, Xiao X H, Guo S S, Jiang C Z, Fan Z Y, Wang T, Chen X S, Lu W, Hu W D, Liao L 2014 Adv. Mater. 26 7399Google Scholar

    [6]

    Liu L C, Chen J S, Jeng J S 2014 Appl. Phys. Lett. 105 023509Google Scholar

    [7]

    Kim M, Jeong J H, Lee H J, Ahn T K, Shin H S, Park J S, Jeong J K, Mo Y G, Kim H D 2007 Appl. Phys. Lett. 90 212114Google Scholar

    [8]

    Xu H, Lan L, Xu M, Zou J, Wang L, Wang D, Peng J 2011 Appl. Phys. Lett. 99 253501Google Scholar

    [9]

    Xu Y L, Li X F, Zhu L Y, Zhang J H 2016 Mater. Sci. Semicond. Process. 46 23Google Scholar

    [10]

    Cho S H, Ko J B, Ryu M K, Yang J H, Yeom H I, Lim S K, Hwang C S, Park S H K 2015 IEEE Trans. Electron Devices 62 3653Google Scholar

    [11]

    Yang J H, Choi J H, Cho S H, Pi J E, Kim H O, Hwang C S, Park K, Yoo S 2018 IEEE Electron Device Lett. 39 508Google Scholar

    [12]

    Zhao M J, Zhang Z W, Xu Y C, Xu D S, Zhang J Y, Huang Z C 2020 Phys. Status Solidi A 217 1900773Google Scholar

    [13]

    Li Z Y, Yang H Z, Chen S C, Lu Y B, Xin Y Q, Yang T L, Sun H 2018 J. Phys. D:Appl. Phys. 51 175101Google Scholar

    [14]

    Cathleen A H, Gaillard J F, Kenneth R P 2010 J. Solid State Chem. 183 761Google Scholar

    [15]

    Jeong J K, Jeong J H, Yang H W, Park J S, Mo Y G, Kim H D 2007 Appl. Phys. Lett. 91 113505Google Scholar

    [16]

    Chong E, Jo K C, Lee S Y 2010 Appl. Phys. Lett. 96 152102Google Scholar

    [17]

    Ye Z Z, Yue S L, Zhang J, Li X F, Chen L X, Lu J G 2016 IEEE Trans. Electron Devices 63 3547Google Scholar

    [18]

    Jhu J C, Chang T C, Chang G W, Tai Y H, Tsai W W, Chiang W J, Yan J Y 2013 J. Appl. Phys. 114 204501Google Scholar

    [19]

    Lu R K, Lu J G, Wei X S, Yue S L, Li S Q, Lu B J, Zhao Y, Zhu L P, Chen L X, Ye Z Z 2020 Adv. Electron. Mater. 6 2000233Google Scholar

    [20]

    Umeda K, Miyasako T, Sugiyama A, Tanaka A, Suzuki M, Tokumitsu E, Shimoda T 2013 J. Appl. Phys. 113 184509Google Scholar

    [21]

    Hsieh T Y, Chang T C, Chen T C, Tsai M Y, Lu W H, Chen S C, Jian F Y, Lin C S 2011 Thin Solid Films 520 1427Google Scholar

    [22]

    Pan C C, Yang S B, Chen L L, Shi J F, Sun X, Li X F, Zhang J H 2020 IEEE J. Electron Devices Soc. 8 524Google Scholar

    [23]

    Xu W X, Hu L Y, Zhao C, Zhang L J, Zhu D L, Cao P J, Liu W J, Han S, Liu X K, Jia F, Zeng Y X, Lu Y M 2018 Appl. Surf. Sci. 455 554Google Scholar

    [24]

    Mude N N, Bukke R N, Saha J K, Avis C, Jang J 2019 Adv. Electron. Mater. 5 1900768Google Scholar

    [25]

    Zhang Q, Xia G D, Li L B, Xia W W, Gong H Y, Wang S M 2019 Curr. Appl. Phys. 19 174Google Scholar

    [26]

    Hsu C C, Chou C H, Chen Y T, Jhang W C 2019 IEEE Trans. Electron Devices 66 2631Google Scholar

    [27]

    Lee C G, Dodabalapur A 2012 J. Electron. Mater. 41 895Google Scholar

    [28]

    Ohara H, Sasaki T, Noda K, Ito S, Sasaki M, Endo Y, Yoshitomi S, Sakata J, Serikawa T, Yamazaki S 2010 Jpn. J. Appl. Phys. 49 03cd02Google Scholar

    [29]

    Park J, Kim S, Kim C, Kim S, Song I, Yin H, Kim K K, Lee S, Hong K, Lee J, Jung J, Lee E, Kwon K W, Park Y 2008 Appl. Phys. Lett. 93 053505Google Scholar

    [30]

    Bukke R N, Avis C, Jang J 2016 IEEE Electron Device Lett. 37 433Google Scholar

    [31]

    Biswas P K, De A, Dua L K, Chkoda L 2006 Indian Acad. Sci. 29 323Google Scholar

    [32]

    Chen T C, Chang T C, Hsieh T Y, Tsai C T, Chen S C, Lin C S, Jian F Y, Tsai M Y 2011 Thin Solid Films 520 1422Google Scholar

    [33]

    Chowdhury H M D, Migliorato P, Jang J 2013 Appl. Phys. Lett. 102 143506Google Scholar

  • 图 1  IZTO TFT (a) 器件截面示意图; (b) 像素阵列10倍显微镜图像(插图为50倍)

    Fig. 1.  (a) Schematic cross section of an IZTO TFT; (b) microscope images of the IZTO TFTs array with magnification 10 times (Inset shows 50 times).

    图 2  IZTO薄膜AFM图 (a) 无处理; (b) N2O等离子体处理

    Fig. 2.  AFM images of the IZTO film: (a) without N2O plasma treatment ; (b) with N2O plasma treatment.

    图 3  (a) 有无N2O等离子体处理的IZTO TFT转移曲线; (b) 无处理的IZTO TFT输出曲线; (c) N2O等离子处理的IZTO TFT输出曲线

    Fig. 3.  (a) Transfer characteristics of an IZTO TFT without and with N2O plasma treatment; output characteristics of an IZTO TFT (b) without and (c) with N2O plasma treatment.

    图 4  IZTO薄膜O 1s XPS图谱 (a) 无处理; (b) N2O等离子体处理

    Fig. 4.  XPS of O 1s spectra on the surface of IZTO film (a) without and (b) with N2O plasma treatment.

    图 5  IZTO TFT的PBIS和NBIS稳定性 (a) 和(b) 为无处理, (c) 和(d) 为N2O等离子体处理; (e) 阈值电压随偏压时间的变化; (f) N2O等离子体处理后IZTO TFT的能带图示意图

    Fig. 5.  Stability for IZTO TFT: Stability of (a) untreated and (c) treated PBIS; stability of (b) untreated and (d) treated NBIS; (e) plots of voltage shift versus time; (f) band diagram of IZTO TFT with N2O plasma treatment.

    图 6  IZTO薄膜的原子模型 (a) 无处理; (b) N2O等离子处理

    Fig. 6.  Atomic model of the IZTO film (a) without and (b) with N2O plasma treatment.

    图 7  阵列中各个位置器件负偏压光照稳定性分布 (a) 左上; (b)右上; (c) 中间; (d)左下; (e) 右下; (f) 阵列整体负偏压光照稳定性

    Fig. 7.  Illumination stability distribution of devices under negative bias in the array: (a) Top-left; (b) top-right; (c) middle; (d) bottom-left; (e) bottom-right; (f) the negative bias illumination stress stability of the array.

    图 8  20个器件迁移率和亚阈值摆幅分布 (a), (b) N2O等离子体处理; (c), (d) 无处理

    Fig. 8.  Histogram of threshold voltage and mobility for the IZTO TFTs: (a) , (b) With N2O plasma treatment; (c), (d) without N2O plasma treatment. The data are collected from 20 TFTs.

    表 1  有无N2O等离子体处理的IZTO TFT性能对比

    Table 1.  Device performance comparison of IZTO TFT without and with N2O plasma treatment.

    阈值
    电压/
    V
    迁移率/

    (cm2·V–1·s–1)
    亚阈值摆幅/

    (mV·dec–1)
    开关比
    Untreated–0.529.122041.1×107
    Treated0.151.521372.3×107
    下载: 导出CSV
  • [1]

    Saito N, Ueda T, Tezuka T, Ikeda K 2018 IEEE J. Electron Devices Soc. 6 1253Google Scholar

    [2]

    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488Google Scholar

    [3]

    Kim J, Park J, Yoon G, Khushabu A, Kim J S, Pae S, Cho E C, Yi J 2020 Mater. Sci. Semicond. Process. 120 105264Google Scholar

    [4]

    Karteri İ, Karataş Ş, Al-Ghamdi A A, Yakuphanoğlu F 2015 Synth. Met. 199 241Google Scholar

    [5]

    Liu X Q, Wang J L, Liao C N, Xiao X H, Guo S S, Jiang C Z, Fan Z Y, Wang T, Chen X S, Lu W, Hu W D, Liao L 2014 Adv. Mater. 26 7399Google Scholar

    [6]

    Liu L C, Chen J S, Jeng J S 2014 Appl. Phys. Lett. 105 023509Google Scholar

    [7]

    Kim M, Jeong J H, Lee H J, Ahn T K, Shin H S, Park J S, Jeong J K, Mo Y G, Kim H D 2007 Appl. Phys. Lett. 90 212114Google Scholar

    [8]

    Xu H, Lan L, Xu M, Zou J, Wang L, Wang D, Peng J 2011 Appl. Phys. Lett. 99 253501Google Scholar

    [9]

    Xu Y L, Li X F, Zhu L Y, Zhang J H 2016 Mater. Sci. Semicond. Process. 46 23Google Scholar

    [10]

    Cho S H, Ko J B, Ryu M K, Yang J H, Yeom H I, Lim S K, Hwang C S, Park S H K 2015 IEEE Trans. Electron Devices 62 3653Google Scholar

    [11]

    Yang J H, Choi J H, Cho S H, Pi J E, Kim H O, Hwang C S, Park K, Yoo S 2018 IEEE Electron Device Lett. 39 508Google Scholar

    [12]

    Zhao M J, Zhang Z W, Xu Y C, Xu D S, Zhang J Y, Huang Z C 2020 Phys. Status Solidi A 217 1900773Google Scholar

    [13]

    Li Z Y, Yang H Z, Chen S C, Lu Y B, Xin Y Q, Yang T L, Sun H 2018 J. Phys. D:Appl. Phys. 51 175101Google Scholar

    [14]

    Cathleen A H, Gaillard J F, Kenneth R P 2010 J. Solid State Chem. 183 761Google Scholar

    [15]

    Jeong J K, Jeong J H, Yang H W, Park J S, Mo Y G, Kim H D 2007 Appl. Phys. Lett. 91 113505Google Scholar

    [16]

    Chong E, Jo K C, Lee S Y 2010 Appl. Phys. Lett. 96 152102Google Scholar

    [17]

    Ye Z Z, Yue S L, Zhang J, Li X F, Chen L X, Lu J G 2016 IEEE Trans. Electron Devices 63 3547Google Scholar

    [18]

    Jhu J C, Chang T C, Chang G W, Tai Y H, Tsai W W, Chiang W J, Yan J Y 2013 J. Appl. Phys. 114 204501Google Scholar

    [19]

    Lu R K, Lu J G, Wei X S, Yue S L, Li S Q, Lu B J, Zhao Y, Zhu L P, Chen L X, Ye Z Z 2020 Adv. Electron. Mater. 6 2000233Google Scholar

    [20]

    Umeda K, Miyasako T, Sugiyama A, Tanaka A, Suzuki M, Tokumitsu E, Shimoda T 2013 J. Appl. Phys. 113 184509Google Scholar

    [21]

    Hsieh T Y, Chang T C, Chen T C, Tsai M Y, Lu W H, Chen S C, Jian F Y, Lin C S 2011 Thin Solid Films 520 1427Google Scholar

    [22]

    Pan C C, Yang S B, Chen L L, Shi J F, Sun X, Li X F, Zhang J H 2020 IEEE J. Electron Devices Soc. 8 524Google Scholar

    [23]

    Xu W X, Hu L Y, Zhao C, Zhang L J, Zhu D L, Cao P J, Liu W J, Han S, Liu X K, Jia F, Zeng Y X, Lu Y M 2018 Appl. Surf. Sci. 455 554Google Scholar

    [24]

    Mude N N, Bukke R N, Saha J K, Avis C, Jang J 2019 Adv. Electron. Mater. 5 1900768Google Scholar

    [25]

    Zhang Q, Xia G D, Li L B, Xia W W, Gong H Y, Wang S M 2019 Curr. Appl. Phys. 19 174Google Scholar

    [26]

    Hsu C C, Chou C H, Chen Y T, Jhang W C 2019 IEEE Trans. Electron Devices 66 2631Google Scholar

    [27]

    Lee C G, Dodabalapur A 2012 J. Electron. Mater. 41 895Google Scholar

    [28]

    Ohara H, Sasaki T, Noda K, Ito S, Sasaki M, Endo Y, Yoshitomi S, Sakata J, Serikawa T, Yamazaki S 2010 Jpn. J. Appl. Phys. 49 03cd02Google Scholar

    [29]

    Park J, Kim S, Kim C, Kim S, Song I, Yin H, Kim K K, Lee S, Hong K, Lee J, Jung J, Lee E, Kwon K W, Park Y 2008 Appl. Phys. Lett. 93 053505Google Scholar

    [30]

    Bukke R N, Avis C, Jang J 2016 IEEE Electron Device Lett. 37 433Google Scholar

    [31]

    Biswas P K, De A, Dua L K, Chkoda L 2006 Indian Acad. Sci. 29 323Google Scholar

    [32]

    Chen T C, Chang T C, Hsieh T Y, Tsai C T, Chen S C, Lin C S, Jian F Y, Tsai M Y 2011 Thin Solid Films 520 1422Google Scholar

    [33]

    Chowdhury H M D, Migliorato P, Jang J 2013 Appl. Phys. Lett. 102 143506Google Scholar

  • [1] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 物理学报, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [2] 张雪, KimBokyung, LeeHyeonju, ParkJaehoon. 低温快速制备基于溶液工艺的高性能氧化铟薄膜及晶体管. 物理学报, 2024, 73(9): 096802. doi: 10.7498/aps.73.20240082
    [3] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器. 物理学报, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [4] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [5] 张世玉, 喻志农, 程锦, 吴德龙, 栗旭阳, 薛唯. 退火温度和Ga含量对溶液法制备InGaZnO薄膜晶体管性能的影响. 物理学报, 2016, 65(12): 128502. doi: 10.7498/aps.65.128502
    [6] 金蓉, 谌晓洪. VOxH2O (x= 15)团簇的结构及稳定性研究. 物理学报, 2012, 61(9): 093103. doi: 10.7498/aps.61.093103
    [7] 高潭华, 吴顺情, 胡春华, 朱梓忠. 二维BC2 N薄片的结构稳定性和电子性质. 物理学报, 2011, 60(12): 127305. doi: 10.7498/aps.60.127305
    [8] 罗翀, 孟志国, 王烁, 熊绍珍. 溶液法铝诱导晶化制备多晶硅薄膜. 物理学报, 2009, 58(9): 6560-6565. doi: 10.7498/aps.58.6560
    [9] 郭子政, 宣志国, 张院生, 安彩虹. 铁磁纳米阵列膜温度稳定性的损伤扩散研究. 物理学报, 2008, 57(10): 6571-6576. doi: 10.7498/aps.57.6571
    [10] 李 鹤, 李学东, 李 娟, 吴春亚, 孟志国, 熊绍珍, 张丽珠. 表面修饰改善溶液法金属诱导晶化薄膜稳定性与均匀性研究. 物理学报, 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
    [11] 杨建宋, 李宝兴. 砷化镓离子团簇的稳定性研究. 物理学报, 2006, 55(12): 6562-6569. doi: 10.7498/aps.55.6562
    [12] 萨 宁, 康晋锋, 杨 红, 刘晓彦, 张 兴, 韩汝琦. 具有HfN/HfO2栅结构的p型MOSFET中的负偏置-温度不稳定性研究. 物理学报, 2006, 55(3): 1419-1423. doi: 10.7498/aps.55.1419
    [13] 祝祖送, 林璇英, 余云鹏, 林揆训, 邱桂明, 黄 锐, 余楚迎. 用SiCl4/H2气源沉积多晶硅薄膜光照稳定性的研究. 物理学报, 2005, 54(8): 3805-3809. doi: 10.7498/aps.54.3805
    [14] 霍崇儒, 朱振和, 葛培文, 陈冬. 微重力下溶液法晶体生长模型中晶体生长界面稳定性的研究. 物理学报, 2001, 50(3): 377-382. doi: 10.7498/aps.50.377
    [15] 李 权, 刘晓亚, 王红艳, 朱正和, 傅依备, 汪小琳, 孙 颖. PuHn+(n=1,2,3)分子离子的势能函数与稳定性. 物理学报, 2000, 49(12): 2347-2351. doi: 10.7498/aps.49.2347
    [16] 王合英, 姜恩永, 马振伟, 何元金. Ti掺杂对α″-Fe16N2相稳定性的影响. 物理学报, 1998, 47(11): 1912-1916. doi: 10.7498/aps.47.1912
    [17] 周玉美, 吴京生. 高β等离子体的离子-离子束不稳定性. 物理学报, 1983, 32(10): 1319-1322. doi: 10.7498/aps.32.1319
    [18] 霍裕平. 等离子体的静态稳定性. 物理学报, 1977, 26(2): 149-154. doi: 10.7498/aps.26.149
    [19] 碘酸锂晶体研究小组. α-和β-碘酸锂晶体在水溶液中的形成条件和相对稳定性. 物理学报, 1975, 24(2): 91-96. doi: 10.7498/aps.24.91
    [20] 石长和. 等离子射流的磁流不稳定性. 物理学报, 1965, 21(9): 1700-1704. doi: 10.7498/aps.21.1700
计量
  • 文章访问数:  4579
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 修回日期:  2022-03-23
  • 上网日期:  2022-06-24
  • 刊出日期:  2022-07-05

/

返回文章
返回