搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sc2O3掺杂对稀土难熔钇盐阴极热发射性能的影响研究

漆世锴 王兴起 李云 张琪 王宇

引用本文:
Citation:

Sc2O3掺杂对稀土难熔钇盐阴极热发射性能的影响研究

漆世锴, 王兴起, 李云, 张琪, 王宇

Study on the Effect of Sc2O3 Doping on the Thermal Emission Properties of the Rare-Earth Refractory Yttrium Salt Cathode

Qi Shi-Kai, Wang Xing-Qi, Li Yu, Zhang Qi, Wang Yu
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 为了提高磁控管用稀土难熔钇盐阴极的热发射能力,探索Sc2O3掺杂对稀土难熔钇盐阴极热发射性能的影响机理,采用Sc2O3掺杂稀土难熔钇盐来制备阴极,并测试该阴极的热发射性能。热发射测试结果表明,Sc2O3掺杂能够有效的提高稀土难熔钇盐阴极的热发射能力。其中,3wt%Sc2O3掺杂能够最大的提高阴极的热发射能力,当阳压为300V,温度为1600℃时,3wt%Sc2O3掺杂阴极可以支取3.85A/cm2的热发射电流。而在相同条件下,未掺杂Sc2O3阴极,即稀土难熔钇盐阴极仅可以支取1.66A/cm2的热发射电流,3wt%Sc2O3掺杂能够将该阴极的热发射能力提升132%。寿命试验结果表明,当负载电流为0.5 A/cm2,温度为1500℃时,3wt%Sc2O3掺杂阴极的试验寿命已经超过4200h,且没有明显的衰减迹象。最后,利用SEM、EDS、XRD及AES等对阴极进行了详细的分析。结果表明,热发射测试过程中,一方面,掺杂的Sc2O3和Y2Hf2O7发生了置换固溶反应,生成了ScxY(2-x)Hf2O[7+(3/2)x]固溶体,造成了Y2Hf2O7晶格畸变,导致晶格处于高能状态,降低了阴极表面的逸出功,与此同时,Sc2O3中的Sc置换掉了Y2Hf2O7晶胞中Y,被置换出来的Y以金属单质形式存在,改善了阴极表面的导电性。另一方面,ScxY(2-x)Hf2O[7+(3/2)x]固溶体中会产生一定数量的Vo2+氧空位和自由电子,也使得阴极表面的导电性能得到了改善。最终,在这两方面的共同作用下,阴极的热发射能力得到了显著的提高。
    To improve the thermionic emission performance of the rare-earth refractory yttrium salt cathode used in the magnetron, the influence of Sc2O3 doping on its thermionic emission properties was explored. Cathodes were fabricated by incorporating different weight percentages of Sc2O3 into the rare-earth refractory yttrium salt matrix, and their thermionic emission properties were systematically evaluated. The experimental findings revealed that the doping of Sc2O3 significantly enhances the thermionic emission capability of the cathode. Notably, a doping concentration of 3wt% Sc2O3 yielded the most pronounced improvement in emission performance. The 3wt% Sc2O3-doped cathode could achieve a thermionic emission current density of 3.85A/cm2 under a 300 V anode voltage at 1600℃. In contrast, the undoped cathode supplied a current density of merely 1.66A/cm2 under identical conditions, demonstrating a 132% enhancement in thermionic emission efficiency with 3wt% Sc2O3 doping. Utilizing the Richardson line method coupled with data-fitting algorithms, the absolute zero work functions for undoped and Sc2O3-doped cathodes (3wt%, 7wt%, and 11wt%) were determined to be 1.42, 0.93, 0.98, and 1.11 eV, respectively. Longevity assessments indicated that the 3wt% Sc2O3-doped cathode had been stable for over 4200 hours without significant degradation under an initial load of 0.5 A/cm2 at 1400℃. Finaly, those cathodes had been analyzed by the XRD, SEM, EDS, AES respectively. The analysis results showed that during thermionic emission testing, the Sc2O3 and Y2Hf2O7 had undergone substitutional solid solution reactions, forming the ScxY(2-x)Hf2O[7+(3/2)x] solid solution. This process induced lattice distortion in the Y2Hf2O7, placing it in a high-energy state and thereby reducing the work function on the cathode’s surface. Concurrently, Sc from Sc2O3 displaced Y within the Y2Hf2O7 unit cells, with the displaced Y existing in a metallic form, which enhanced the electrical conductivity of the cathode's surface. Additionally, the ScxY(2-x)Hf2O[7+(3/2)x] solid solution generated a substantial number of Vo2+ oxygen vacancies and free electrons, further augmenting surface conductivity. Collectively, these mechanisms contributed to a marked enhancement in the cathode's thermionic emission capacity.
  • [1]

    Vyas S K, Verma R K, Maurya S. 2016 Frequenz -Berlin. 70 9

    [2]

    Patibandla A, Dobbidi P, Tiwari. 2022 IETE Technical Review 1 456.

    [3]

    Lim H, Jeong D H, Lee M, Ro S C. 2017 IEEE Trans. Plasma. Sci. 10 1

    [4]

    Shang J, Yang X, Wang Z. 2020 IEEE Trans. Elec. Dev. 67 2580.

    [5]

    Timofeev N A, Sukhomlinov V S, Georges Z. 2021 IEEE Trans. Plasma. Sci. 49 2387.

    [6]

    Bergner A, Scharf F H, Kühn G, Ruhrmann C, Hoebing. 2014 PLASMA SOURCES SCI T. 23 054005.

    [7]

    Makarov A P, Zemchikhin E M. IEEE Proceedings of IVEC, Busan, Korea (South), 28 April-1 May, 2019 p112.

    [8]

    Djubua B C, Polivnikova O V 2003 Applied Surface Science. 215 242

    [9]

    Djubua B C, Kultashev O K, Kultashev A P, Polivnikova O V. IEEE Proceedings of IVESC Monterey, CA, USA, 24-26 April, 2012 p185.

    [10]

    Hu M W, Wang X X, Qi S K. 2019 IEEE Trans. Elec. Dev. 66 3592.

    [11]

    Wang X X, Meng M F, Zhang R Q, Li Y, Zhang Q. IEEE Proceedings of IVEC, Chengdu, China, 25-28 April, 2023 p 1145.

    [12]

    Wang X X, Liu Y W, Luo J R, Zhan Q L, Li Y, Zhang Q. 2014 IEEE Trans. Elec. Dev. 61 605.

    [13]

    Zhang R Q, Wang X X, Ren F, Yin S Y. 2024 IEEE Trans. Elec. Dev. 71 2078.

    [14]

    Zhang R Q, Ding S X, Wang X X, Ren F, Yin S Y. 2025 IEEE Trans. Elec. Dev. 72 1427.

    [15]

    Mujan N S, Zhou Q F, Liu X T, John B, Matthew J B. 2022 IEEE Trans. Elec. Dev. 69 3513.

    [16]

    Wang J S, Dong L R, Liu W, Yang F. 2017 SCIENCE CHINA Technological Sciences 60 1439.

    [17]

    Yang F, Wang J S, Liu W. 2013 Appl Surface Sci. 270 746

    [18]

    Yang F, Wang J S, Liu W, Zhou M L. 2015 Mater Chem Phys. 149 288.

    [19]

    Wang X Q, Wang X X, Luo J R, Qi S K, Li Y. 2023 IEEE Trans. Elec. Dev. 70 2883.

    [20]

    Qi S K, Wang X X, Luo J R, Zhao Q L, Li Y 2016 Acta Phys. Sin. 65 057901 (in Chinese) [漆世锴, 王小霞, 罗积润, 赵青兰, 李云, 2016 物理学报65 057901]

    [21]

    Sakharov K A, Simonenko E P, Simonenko N P. 2018 Ceram. Int. 44 7647.

    [22]

    Zhou H M, Yi D Q. 2008 J INORG MATER 23 247 (in Chinese) [周宏明, 易丹青2008 无机材料学报23 247]

    [23]

    Yuan Z Q, Zhou Z L, Li Y, He X L, Chen W S, Zhang W T. 2024 Materials Reports 39 24100155 (in Chinese) [袁志谦, 周增林, 李艳, 何学良, 陈文帅, 张婉婷2024材料导报39 24100155]

    [24]

    Prashar G, Vasudev H, Thakur L. 2023 PROT MET PHYS CHEM+ 59 461.

    [25]

    Wang J S, Chen M D, Li C Z, Chen L Y, Yu Y S, Y.H. Wang. 2021 Ceram. Int. 428 127879.

    [26]

    Guo Y Q, Guo L, Liu K Y, Qiu S Y, Guo H B, Xu H B. 2024 J. Mater. Sci. Technol. 182 33.

  • [1] 王瑞刚, 刘泽朋, 香莲, 孙勇. 氧化钪(Sc2O3)的热漫散射强度解析. 物理学报, doi: 10.7498/aps.73.20231241
    [2] 张红艳, 包黎红, 潮洛蒙, 赵凤岐, 刘子忠. 多功能多元稀土六硼化物La1–x Srx B6光吸收及热电子发射机理. 物理学报, doi: 10.7498/aps.70.20211069
    [3] 漆世锴, 王小霞, 王兴起, 胡明玮, 刘理, 曾伟. 大功率磁控管用新型Y2Hf2O7陶瓷阴极研究. 物理学报, doi: 10.7498/aps.69.20191496
    [4] 李凡, 张忻, 张久兴. [Ca24Al28O64]4+(4e)电子化合物的直接合成及热发射性能. 物理学报, doi: 10.7498/aps.68.20190070
    [5] 杨温渊, 董烨, 董志伟. 新型全腔输出半透明阴极相对论磁控管的理论和数值研究. 物理学报, doi: 10.7498/aps.65.248401
    [6] 漆世锴, 王小霞, 罗积润, 赵青兰, 李云. 磁控管用新型Y2O3-Gd2O3-HfO2浸渍W基直热式阴极研究. 物理学报, doi: 10.7498/aps.65.057901
    [7] 史迪夫, 王弘刚, 李伟, 钱宝良. 扇形腔旭日型磁控管结构的理论分析与数字模拟. 物理学报, doi: 10.7498/aps.62.151101
    [8] 岳松, 张兆传, 高冬平. 阻抗匹配条件下磁控管的注入锁频. 物理学报, doi: 10.7498/aps.62.178401
    [9] 李伟, 刘永贵, 杨建华. 同轴辐射相对论磁控管的功率合成研究. 物理学报, doi: 10.7498/aps.61.038401
    [10] 李伟, 刘永贵. 类磁控管结构的理论分析. 物理学报, doi: 10.7498/aps.61.021103
    [11] 李伟, 刘永贵. 2工作模式下可调谐同轴辐射相对论磁控管的模拟研究. 物理学报, doi: 10.7498/aps.60.128403
    [12] 乔建良, 常本康, 钱芸生, 王晓晖, 李飙, 徐源. GaN真空面电子源光电发射机理研究. 物理学报, doi: 10.7498/aps.60.127901
    [13] 李世帅, 张仲, 黄金昭, 冯秀鹏, 刘如喜. In掺杂ZnO薄膜的制备及其白光发射机理. 物理学报, doi: 10.7498/aps.60.097405
    [14] 孙伟峰, 李美成, 赵连城. 低维半导体异质结中的量子相干红外发射机理理论研究. 物理学报, doi: 10.7498/aps.59.6185
    [15] 刘莹, 倪晓武. 乙醇-水团簇分子形成激基缔合物及荧光发射机理研究. 物理学报, doi: 10.7498/aps.58.3572
    [16] 张琳丽, 徐卓, 冯玉军, 盛兆玄. 负脉冲激励下PLZST电子发射特征及发射机理研究. 物理学报, doi: 10.7498/aps.58.4249
    [17] 吴春霞, 周 明, 冯程程, 袁 润, 李 刚, 马伟伟, 蔡 兰. 微纳跨尺度ZnO结构的紫外发射机理研究. 物理学报, doi: 10.7498/aps.57.3887
    [18] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽. 物理学报, doi: 10.7498/aps.56.4372
    [19] 何煜, 郭文康, 邵其鋆, 须平. 自由电弧热发射阴极的物理模型. 物理学报, doi: 10.7498/aps.49.487
    [20] 朱昂如, 吴西林. 用能化电子效应考察二次离子的发射机理. 物理学报, doi: 10.7498/aps.33.1475
计量
  • 文章访问数:  45
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-29

/

返回文章
返回