搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zr/O/W肖特基式热场发射阴极界面发射性能研究

郭家美 阴生毅 孙万众 张永清 金鹤 赵梓辰

引用本文:
Citation:

Zr/O/W肖特基式热场发射阴极界面发射性能研究

郭家美, 阴生毅, 孙万众, 张永清, 金鹤, 赵梓辰

Emission performance at the interface of Zr/O/W Schottky thermal field emission cathodes

GUO Jiamei, YIN Shengyi, SUN Wanzhong, ZHANG Yongqing, JIN He, ZHAO Zichen
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • Zr/O/W肖特基式热场发射阴极作为电子束类高端分析仪器的核心组件, 其独特的界面发射机制一直是阴极领域的研究热点. 本团队成功制备了高性能Zr/O/W肖特基式热场发射阴极, 其发射电流密度可达2.5×104 A/cm2, 使用寿命超过8000 h. 通过能量色散X射线光谱和俄歇电子能谱分析, 对激活阴极发射区表面及深度方向成分分布进行了系统表征. 结果表明, Zr/O/W阴极表面并非传统理论所认为的Zr-O偶极子单分子层, 而是存在一层纳米级厚度的Zr/O/W(100)复合氧化层结构; 该氧化层由三部分构成: W(100)晶面下方的氧渗入层、W(100)面本身以及晶面上方多原子层的Zr-O薄膜. Zr/O/W(100)氧化层使阴极发射面功函数从纳米WO3的5.02 eV显著降低至2.85 eV, 从而形成局域化电子发射集中区. 基于上述实验结果, 结合第一性原理计算, 本研究模拟了W(100)发射界面动态演变过程, 为Zr/O/W肖特基式热场发射阴极界面发射机制提供了新的理论解释.
    The Zr/O/W Schottky-type thermal field emission cathode is a key component in advanced electron beam instrumentation, with its unique interfacial emission mechanism remaining a focus of research in cathode technology. Traditional understanding attributes the decrease of work function at the cathode tip to a monolayer adsorption of Zr-O dipoles on the W(100) facet, with the electropositive orientation directed outward, perpendicular to the surface. This study successfully fabricats a high-performance Zr/O/W Schottky-type thermal field emission cathode that exhibits exceptional emission characteristics, including a current density of 2.5×104 A/cm2 and operational stability exceeding 8000 h. Comprehensive microstructural characterization of the activated emission zone is performed utilizing energy-dispersive X-ray spectroscopy (EDS) and Auger electron spectroscopy (AES), thereby precisely determining elemental distribution profiles across both surface and subsurface regions. The results reveal that during cathode preparation, the zirconia coating diffuses in the form of Zr-O complexes within the tungsten matrix, forming nanoscale enrichment zones specifically on the W(100) facet. Under operational conditions combining elevated temperature (1700–1800 K) and high electric field (>107 V/m), the W(100) surface develops not an adsorbed Zr-O dipole monolayer, but a nanoscale Zr/O/W(100) composite oxide structure. This multilayer structure consists of three coherently integrated components: 1) an oxygen-enriched diffusion layer beneath the W(100) interface, 2) the crystalline W(100) substrate, and 3) an overlying Zr-O thin film with multiatomic-layer thickness. First-principles calculations simulating the dynamic evolution of the W(100) emission interface during thermal treatment corroborate the experimental findings. The computed work function of the cathode emission surface decreases significantly from 5.02 eV (characteristic of nano-WO3) to 2.85 eV, showing excellent agreement with experimental measurements. When the emission interface becomes unbalanced due to external perturbations, the continuous diffusion of the zirconia coating toward the tip region, combined with the diffusion of Zr-O complexes from the subsurface of the W(100) crystal plane to the interface, enables autonomous replenishment of surface-active sites. This dynamic process effectively maintains a stable low-work-function emission surface. Both theoretical and experimental evidence consistently demonstrate that the Zr/O/W(100) oxide film serves as the fundamental material basis for the exceptional emission current density, remarkable stability, and extended operational lifetime of Zr/O/W cathodes.
  • 图 1  场发射阴极组件示意图[11]

    Fig. 1.  Schematic diagram of field emission cathode assembly[11]

    图 2  Zr/O/W肖特基式热场发射阴极(R = 600 nm)在不同温度下的肖特基曲线

    Fig. 2.  Schottky plots of Zr/O/W Schottky thermal field emission cathode at three tip temperatures (R = 600 nm).

    图 3  Zr/O/W肖特基式场发射阴极SEM图(20000 X) (a) 发射测试前; (b) 发射测试后

    Fig. 3.  SEM images of Zr/O/W Schottky thermal field emission cathodes (20000 X): (a) Before emission testing; (b) after emission testing.

    图 4  Zr/O/W肖特基式场发射阴极发射端SEM俯视图(50000 X)

    Fig. 4.  Top-view SEM image of the emission tip on Zr/O/W Schottky thermal field emission cathodes (50000 X).

    图 5  阴极涂层至发射区SEM图(300 X)

    Fig. 5.  SEM image of coating-to-emitter transition region (300 X).

    图 6  发射端表面SEM图(50000 X) (1) W(100)面取点1; (2) 侧发射区取点2和3; (3)非理想发射区取点4和5

    Fig. 6.  Surface SEM morphology of emitter tip (50000 X) with selected analysis points: (1) Take point 1 from the W(100) surface; (2) take points 2 and 3 from the side emission area; (3) take points 4 and 5 from the non-ideal emission area.

    图 7  图6中阴极表面点1的成分深度分布

    Fig. 7.  Composition depth profile at Point 1 of Fig.6 on surface.

    图 8  Zr/O/W肖特基式场发射阴极表面层晶胞模型 (a) W2Zr2O4; (b) W2Zr1O5; (c) W2O6

    Fig. 8.  Unit cell models of surface layer in Zr/O/W Schottky thermal field emission cathodes: (a) W2Zr2O4; (b) W2Zr1O5; (c) W2O6.

    图 9  Zr/O/W肖特基式场发射阴极表面层升温过程图

    Fig. 9.  In-situ surface layer of Zr/O/W Schottky thermal field emission cathodes under thermal activation.

    表 1  不同工作温度W(100)晶面的元素组成

    Table 1.  Elemental composition of the W(100) crystal plane at various working temperatures.

    序号 温度/
    K
    W atomic percent/% O atomic percent /% Zr atomic percent /%
    110503 1700 96.91 2.59 0.51
    120902 1750 95.22 3.78 1.01
    122804 1800 91.54 6.49 1.98
    下载: 导出CSV

    表 2  阴极涂层至发射区AES分析结果

    Table 2.  AES analysis results of the cathode coating-to-emitter transition region.

    序号O atomic
    percent/%
    Zr atomic
    percent/%
    W atomic
    percent/%
    a34.667.1158.22
    b29.866.7863.35
    c29.925.1764.9
    d32.464.662.94
    下载: 导出CSV

    表 3  发射端表面AES分析结果

    Table 3.  AES analysis results of emitter tip surface.

    序号O atomic percent/%Zr atomic percent/%W atomic percent/%
    170.2710.3919.34
    265.044.5430.42
    333.132.264.67
    443.312.1554.54
    547.922.5149.58
    下载: 导出CSV
  • [1]

    Orloff, J 2009 Handbook of Charged Particle Optics (2nd Ed. ) (Boca Raton: CRC Press) pp2–5

    [2]

    Lamouri A, Muller W, Krainsky I L 1994 Phys. Rev. B 50 4764Google Scholar

    [3]

    Leung T C, Hu H, Liu A J, Lin M C 2019 Phys. Chem. Chem. Phys. 21 25763Google Scholar

    [4]

    郭家美, 阴生毅, 张永清, 孙万众, 高向阳 2022 电子显微学报 41 664

    Guo J M, Yin S Y, Zhang Y Q, Sun W Z, Gao X Y 2022 J. Chin. Electron Microsc. Soc. 41 664

    [5]

    Swanson L W, Schwind G A, Kellogg S M, Liu K 2012 J. Vac. Sci. Technol. , B 30 06f603Google Scholar

    [6]

    Bahm A, Schwind G, Swanson L 2011 J. Appl. Phys. 110 054322Google Scholar

    [7]

    Shimizu R 1998 J. Electron Microsc. 47 371Google Scholar

    [8]

    Iiyoshi R 2011 Nucl. Instrum. Methods Phys. Res. , Sect. A 645 316Google Scholar

    [9]

    Danielson L R, Swanson L W 1979 Surf. Sci. 88 14Google Scholar

    [10]

    Lee S C, Irokawa Y, Inoue M, Shimizu R 1995 Surf. Sci. 330 289Google Scholar

    [11]

    郭家美, 阴生毅, 孙万众, 张永清 2024第二十二届真空电子学学术年会 广州, 中国, 5月9—11日, 2024 第414页

    Guo J M, Yin S Y, Sun W Z, Zhang Y Q 2024 Proceedings of the 22nd Symposium on Vacuum Electronics Guangzhou, China, May 9–11, 2024 p414

    [12]

    王兴起, 王小霞, 罗积润, 李云 2022 稀有金属材料与工程 51 4658

    Wang X Q, Wang X X, Luo J R, Li Y 2022 Rare Met. Mater. Eng. 51 4658

    [13]

    周细文, 朱小芳, 胡权, 黄桃, 杨中海 2011 真空电子技术 2 24

    Zhou X W, Zhu X F, Hu Q, Huang T, Yang Z H 2011 Vac. Electron. 2 24

    [14]

    阴生毅, 吕昕平, 任峰, 卢志鹏, 王欣欣, 王宇, 邯娇, 张琪, 李阳 2021 电子与信息学报 43 3058

    Yin S Y, Lü X P, Ren F, Lu Z P, Wang X X, Wang Y, Han J, Zhang Q, Li Y 2021 J. Electron. Inf. Technol. 43 3058

    [15]

    崔忠圻, 覃耀春 2023 金属学与热处理 (第3版) (北京: 机械工业出版社) 第225页

    Cui Z Q, Qin Y C 2023 Metallography and Heat Treatment (3rd Ed. ) (Beijing: China Machine Press) p225

    [16]

    Zhao Y C, Xu L J, Guo M Y, Li Z, Xu Z N, Ye J H, Wei S Z 2022 J. Alloys Compd. 921 166153Google Scholar

    [17]

    虞觉奇 1987 二元合金状态图集 第1版 (上海: 上海科学技术出版社) 第580页

    Yu J Q 1987 Binary Alloy Phase Diagrams Atlas (1st Ed. ) (Shanghai: Shanghai Science and Technology Press) p580

    [18]

    Diyou J, Li X, Xuemei H, Tao W, Jianfeng H 2018 J. Mater. Res. 34 290

    [19]

    Alkhamees A, Zhou H B, Liu Y L, Jin S, Zhang Y, Lu G H 2013 J. Nucl. Mater. 437 6Google Scholar

    [20]

    刘凯斐, 孙大中, 牛相宏, 张红光, 陈伟 2023 大学物理实验 36 15

    Liu K F, Sun D Z, Niu X H, Zhang H G, Chen W 2023 Phys. Exp. Coll. 36 15

    [21]

    Nie Z, Ma L, Xi X, Liu Y, Zhao L 2021 J. Inorg. Mater. 36 1125Google Scholar

    [22]

    Kul'kova S E, Bakulin A V, Hocker S, Schmauder S 2013 Tech. Phys. 58 325Google Scholar

    [23]

    Nagy D, Humphry-Baker S A 2022 Scr. Mater. 209 114373Google Scholar

    [24]

    Kajita S, Ohta A, Ishida T, Makihara K, Yoshida T, Ohno N 2015 Jpn. J. Appl. Phys. 54 126201Google Scholar

  • [1] 漆世锴, 王兴起, 李云, 张琪, 王宇. Sc2O3掺杂对稀土难熔钇盐阴极热发射性能的影响. 物理学报, doi: 10.7498/aps.74.20250520
    [2] 郭家美, 阴生毅, 孙万众, 张永清, 金鹤, 赵梓辰. Zr/O/W肖特基式热场发射阴极界面发射性能研究. 物理学报, doi: 10.7498/aps.74.20251100
    [3] 尚吉花, 杨新宇, 孙大鹏, 张久兴. 钡钨阴极优化与热电子发射性能. 物理学报, doi: 10.7498/aps.71.20211684
    [4] 郝广辉, 韩攀阳, 李兴辉, 李泽鹏, 高玉娟. 真空沟道结构GaAs光电阴极电子发射特性. 物理学报, doi: 10.7498/aps.69.20191893
    [5] 李凡, 张忻, 张久兴. [Ca24Al28O64]4+(4e)电子化合物的直接合成及热发射性能. 物理学报, doi: 10.7498/aps.68.20190070
    [6] 郝广辉, 李泽鹏, 高玉娟, 周亚昆. 表面形貌对热阴极电子发射特性的影响. 物理学报, doi: 10.7498/aps.68.20181725
    [7] 王丹, 贺永宁, 叶鸣, 崔万照. 金纳米结构表面二次电子发射特性. 物理学报, doi: 10.7498/aps.67.20180079
    [8] 任峰, 阴生毅, 卢志鹏, 李阳, 王宇, 张申金, 杨峰, 卫东. 深紫外激光光发射与热发射电子显微镜在热扩散阴极研究中的应用. 物理学报, doi: 10.7498/aps.66.187901
    [9] 王秋萍, 冯玉军, 徐卓, 成鹏飞, 凤飞龙. 铌镁酸铅-钛酸铅铁电阴极电子发射特性. 物理学报, doi: 10.7498/aps.64.247701
    [10] 虞洋, 赵永涛, 王瑜玉, 王兴, 程锐, 周贤明, 李永峰, 刘世东, 雷瑜, 孙渊博, 曾利霞. 近玻尔速度Ne2+离子穿过碳膜引起的电子发射. 物理学报, doi: 10.7498/aps.62.157901
    [11] 左应红, 王建国, 朱金辉, 牛胜利, 范如玉. 爆炸电子发射初期阴极表面电场的研究. 物理学报, doi: 10.7498/aps.61.177901
    [12] 王益军, 王六定, 杨敏, 刘光清, 严诚. 分层掺B和吸附H2O碳纳米管的结构稳定性及电子场发射性能. 物理学报, doi: 10.7498/aps.59.4950
    [13] 陈安民, 高勋, 姜远飞, 丁大军, 刘航, 金明星. 数值模拟飞秒激光加热金属的热电子发射. 物理学报, doi: 10.7498/aps.59.7198
    [14] 王建国, 徐忠锋, 赵永涛, 王瑜玉, 李德慧, 赵迪, 肖国青. 反冲原子对低速离子轰击Si表面时电子发射产额的影响. 物理学报, doi: 10.7498/aps.59.7803
    [15] 张琳丽, 徐卓, 冯玉军, 盛兆玄. 负脉冲激励下PLZST电子发射特征及发射机理研究. 物理学报, doi: 10.7498/aps.58.4249
    [16] 王小霞, 廖显恒, 罗积润, 赵青兰. 亚微米电子发射材料的合成及发射性能. 物理学报, doi: 10.7498/aps.57.1924
    [17] 盛兆玄, 冯玉军, 黄 璇, 徐 卓, 孙新利. 反铁电陶瓷的强电子发射特性研究. 物理学报, doi: 10.7498/aps.57.4590
    [18] 余建华, 赖建军, 黄建军, 王新兵, 丘军林. 槽型空心阴极放电中槽底阴极面的电子发射对放电的影响. 物理学报, doi: 10.7498/aps.51.2080
    [19] 卢励吾, 张砚华, 徐遵图, 徐仲英, 王占国, J.Wang, WeikunGe. 快速热处理对应变InGaAs/GaAs单量子阱激光二极管电子发射和DX中心的影响. 物理学报, doi: 10.7498/aps.51.367
    [20] 何煜, 郭文康, 邵其鋆, 须平. 自由电弧热发射阴极的物理模型. 物理学报, doi: 10.7498/aps.49.487
计量
  • 文章访问数:  41
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-15
  • 修回日期:  2025-09-19
  • 上网日期:  2025-12-17

/

返回文章
返回