搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空沟道结构GaAs光电阴极电子发射特性

郝广辉 韩攀阳 李兴辉 李泽鹏 高玉娟

引用本文:
Citation:

真空沟道结构GaAs光电阴极电子发射特性

郝广辉, 韩攀阳, 李兴辉, 李泽鹏, 高玉娟

The electron emission characteristics of GaAs photocathode with vacuum-channel structure

Hao Guang-Hui, Han Pan-Yang, Li Xing-Hui, Li Ze-Peng, Gao Yu-Juan
PDF
HTML
导出引用
  • 光电阴极的发射电流密度和寿命限制了其在功率器件和大科学装置中的应用. 本文结合光电阴极和场发射阴极电子发射理论, 设计了大电流密度的真空沟道结构光电阴极组件, 并使用覆膜和刻蚀技术制备了以GaAs衬底为阴极材料的光电阴极组件. 光电阴极组件电子发射特性测试结果显示, 常温状态下随入射光功率增加, 阴极发射电流增加幅度逐步增大. 光功率为5 W时, 发射电流达到26.12 mA, 电流密度达到5.33 A/cm2. 随光电阴极组件工作温度增加, 阴极材料内的载流子浓度也会相应地增加, 提高了负极对阴极材料内发射电子的补充效率, 增强了阴极组件的电子发射能力. 当光电阴极组件为400 ℃时, 其发射电流可达到89.69 mA. 由于阴极表面不存在激活原子, 在光电阴极组件连续144 h的寿命试验中, 阴极的发射电流为4.5 ± 0.3 mA, 阴极发射性能并未出现明显衰减. 真空沟道是光电阴极组件电子发射的主要区域, 通过改善真空沟道结构参数可以直接调整阴极组件发射电子束的形状, 增强大电流密度光电阴极在真空电子器件和设备中的适用性.
    The photocathode was an ideal electronic source with fast response, centralized distribution of electronic capabilities, and many other advantages. But for its low emission current density and short lifetime at ion bombardment environment, it will not be used in power devices and large scientific devices. Although the emission current of the photocathode can be increased with the aid of electric filed, it was not reach the milliamperelevel. In the field emission cathode, the strong electric field can effectively reduce the surface barrier of the emitter, so that the cathode produces electron emission. Based on the photoelectric conversion mechanism of photocathode and the electron emission theory of field emission cathode, a vacuum channel structure photocathode module is designed. The cathode modules with GaAs substrate were fabricated by the peritoneal and etching process. The parameters of vacuum channel were 3 μm × 700 μm, and its array structure was 1 × 100. The deep of the vacuum channels were 400 nm. It can be seen from the test result, the emission current of the photocathode was 26.12 mA with the laser beam power 5 W, and its emission current density was 5.33 A/cm2. During cathode operation, the laser beam and emission will cause the temperature of the photocathode material to rise, and this could icreasing the conductivity of the GaAs, the efficiency of electron supplement from negative electrode to electron emission area of the GaAs will also be improving. Its emission current could reach 89.69 mA at 400 ℃. Because there is no active atom on the photocathode surface, its lifetime was longer than the traditional photocathode that astivated by Cs/O. The life test of the photocathode modules was carried out, its emission current was 4.5 mA ± 0.3 mA within the 144 h, and its performance was not attenuate significantly. The vacuum channel was the main area of the photocatode electron emission, and the shape of electron beam can be easily obtained by adjusting the structure of the vacuum channel parameters. This advantage can improve the applicability of high current density photocathode in vacuum electronic devices and equipment.
      通信作者: 郝广辉, hghhgh@126.com
    • 基金项目: 国家级-基于人工表面等离激元的功能集成型辐射器研究(61601420)
      Corresponding author: Hao Guang-Hui, hghhgh@126.com
    [1]

    Han J W, Oh J S, Meyyappan M 2012 Appl. Phys. Lett. 100 213505Google Scholar

    [2]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [3]

    Feng J J, Ren D P, Li H Y, Tang Y, Xing J Y 2011 Terahertz Sci. Technol. 4 164

    [4]

    Stepanov A G, Hebling J, Kuhl J 2003 Appl. Phys. Lett. 83 3000Google Scholar

    [5]

    Liu J F, Zhou Q L, Zhang C L 2013 Appl. Phys. Lett. 103 241911Google Scholar

    [6]

    Kim J, Kim J, Oh H, Meyyappan M, Han J W, Lee J S 2016 J. Vac. Sci. Technol. B 34 042201Google Scholar

    [7]

    Miao J S, Zhang S M, Cai L, Scherr M, Wang C 2015 Nano 9 9236

    [8]

    Kim M, Kim H K 2015 J. Appl. Phys. 118 104504Google Scholar

    [9]

    Gilad D, Er ez, Le eo 2008 Appl. Phys. Lett. 92 262903Google Scholar

    [10]

    Zhao J, Chang B K, XiongY J, Zhang JJ, Zhang Y J 2012 Opt. Commun. 285 589Google Scholar

    [11]

    张益军, 牛军, 赵静, 邹继军, 常本康 2011 物理学报 60 067301Google Scholar

    Zhang Y J, Niu J, Zhao J, Zou J J, Chang B K 2011 Acta Phys. Sin. 60 067301Google Scholar

    [12]

    Wang X H, Chang B K, Ren L, Gao P 2011 Appl. Phys. Lett. 98 082109Google Scholar

    [13]

    Zhang Y J, Zou J J, Niu J, Zhao J, Chang B K 2011 J. Appl. Phys. 110 063113Google Scholar

    [14]

    Hao G H, Yang M Z, Chang B K, Chen X L, Zhang J J, Fu X Q 2013 Appl. Opt. 52 5671Google Scholar

    [15]

    邹继军, 张益军, 杨智, 常本康 2011 物理学报 60 017902Google Scholar

    Zou J J, Zhang Y J, Yang Z, Chang B K 2011 Acta Phys. Sin. 60 017902Google Scholar

    [16]

    Takuya H, Lothar M, Andreas L, Peter D, Peter H 2015 Appl. Phys. Lett. 106 051109Google Scholar

    [17]

    Gys T 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 787 254Google Scholar

    [18]

    Chao Y C, Hu M C, Tsai W W, Zan H W, Meng H F, Tsai H K, Horng S F 2010 Appl. Phys. Lett. 97 223307Google Scholar

    [19]

    刘维浩, 张雅鑫, 胡旻, 周俊, 刘盛纲 2012 物理学报 61 127901Google Scholar

    Liu W H, Zhang Y X, Hu M, Zhou J, Liu S G 2012 Acta Phys. Sin. 61 127901Google Scholar

    [20]

    Hsu S H, Kang W P, Wisitsora-at A, Davidson J L 2012 Diamond Relat. Mater. 22 142Google Scholar

    [21]

    Hsu S H, Kang W P, Raina S, Howell M 2017 J. Vac. Sci. Technol. B 35 032201Google Scholar

  • 图 1  真空沟道结构光电阴极组件工作原理(1为负极, 2为阴极, 3为绝缘层, 4为栅极, 5为真空沟道)

    Fig. 1.  Working principle of photocathode with vacuum channel. Symbol 1, 2, 3, 4 and 5 are negative electrode, photocathode material, insulation, grid electrode and vacuum channel, respectively.

    图 2  真空沟道结构显微形貌, 1为阴极, 2为栅极

    Fig. 2.  Surface microtopography of vacuum channel structure. Symbol 1 and 2 are photocathode material grid electrode, respectively.

    图 3  不同功率的激光光束照射下光电阴极组件的直流发射特性

    Fig. 3.  DC emission characteristics of photocathode module with different laser bean power.

    图 4  不同温度条件下光电阴极组件的直流发射特性

    Fig. 4.  DC emission characteristics of photocathode module with different temperature.

    图 5  光电阴极组件寿命测试曲线

    Fig. 5.  The lifetime test curve of photocathode module.

    图 6  长方形真空沟道结构光电阴极仿真模型, 1为阴极材料, 2为绝缘层, 3为栅极, 4为阳极

    Fig. 6.  Simulation model of photocathode module with rectangular vacuum channel. Symbol 1, 2, 3 and 4 are photocathode material, insulation, grid electrode and positive electrode, respectively.

    图 7  长方形真空沟道结构阴极组件电子束中横向截面电子分布

    Fig. 7.  Electronic distribution of lateral interface of photocathode module electron beam with rectangular vacuum channel.

    图 8  圆形真空沟道结构阴极组件电子发射特性仿真(a)结构模型; (b)横向截面中电子分布, 1为阴极材料, 2为绝缘层, 3为栅极

    Fig. 8.  Simulation of electronic emission characteristics of photocathode module with circular vacuum channel: (a) Structure model; (b) electronic distribution of lateral interface. Symbol 1, 2 and 3 are photocathode material, insulation, and grid electrode, respectively.

  • [1]

    Han J W, Oh J S, Meyyappan M 2012 Appl. Phys. Lett. 100 213505Google Scholar

    [2]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [3]

    Feng J J, Ren D P, Li H Y, Tang Y, Xing J Y 2011 Terahertz Sci. Technol. 4 164

    [4]

    Stepanov A G, Hebling J, Kuhl J 2003 Appl. Phys. Lett. 83 3000Google Scholar

    [5]

    Liu J F, Zhou Q L, Zhang C L 2013 Appl. Phys. Lett. 103 241911Google Scholar

    [6]

    Kim J, Kim J, Oh H, Meyyappan M, Han J W, Lee J S 2016 J. Vac. Sci. Technol. B 34 042201Google Scholar

    [7]

    Miao J S, Zhang S M, Cai L, Scherr M, Wang C 2015 Nano 9 9236

    [8]

    Kim M, Kim H K 2015 J. Appl. Phys. 118 104504Google Scholar

    [9]

    Gilad D, Er ez, Le eo 2008 Appl. Phys. Lett. 92 262903Google Scholar

    [10]

    Zhao J, Chang B K, XiongY J, Zhang JJ, Zhang Y J 2012 Opt. Commun. 285 589Google Scholar

    [11]

    张益军, 牛军, 赵静, 邹继军, 常本康 2011 物理学报 60 067301Google Scholar

    Zhang Y J, Niu J, Zhao J, Zou J J, Chang B K 2011 Acta Phys. Sin. 60 067301Google Scholar

    [12]

    Wang X H, Chang B K, Ren L, Gao P 2011 Appl. Phys. Lett. 98 082109Google Scholar

    [13]

    Zhang Y J, Zou J J, Niu J, Zhao J, Chang B K 2011 J. Appl. Phys. 110 063113Google Scholar

    [14]

    Hao G H, Yang M Z, Chang B K, Chen X L, Zhang J J, Fu X Q 2013 Appl. Opt. 52 5671Google Scholar

    [15]

    邹继军, 张益军, 杨智, 常本康 2011 物理学报 60 017902Google Scholar

    Zou J J, Zhang Y J, Yang Z, Chang B K 2011 Acta Phys. Sin. 60 017902Google Scholar

    [16]

    Takuya H, Lothar M, Andreas L, Peter D, Peter H 2015 Appl. Phys. Lett. 106 051109Google Scholar

    [17]

    Gys T 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 787 254Google Scholar

    [18]

    Chao Y C, Hu M C, Tsai W W, Zan H W, Meng H F, Tsai H K, Horng S F 2010 Appl. Phys. Lett. 97 223307Google Scholar

    [19]

    刘维浩, 张雅鑫, 胡旻, 周俊, 刘盛纲 2012 物理学报 61 127901Google Scholar

    Liu W H, Zhang Y X, Hu M, Zhou J, Liu S G 2012 Acta Phys. Sin. 61 127901Google Scholar

    [20]

    Hsu S H, Kang W P, Wisitsora-at A, Davidson J L 2012 Diamond Relat. Mater. 22 142Google Scholar

    [21]

    Hsu S H, Kang W P, Raina S, Howell M 2017 J. Vac. Sci. Technol. B 35 032201Google Scholar

  • [1] 王国建, 刘燕文, 李芬, 田宏, 朱虹, 李云, 赵恒邦, 王小霞, 张志强. 离子束表面处理对光电阴极发射的影响. 物理学报, 2021, 70(21): 218503. doi: 10.7498/aps.70.20210587
    [2] 漆世锴, 王小霞, 王兴起, 胡明玮, 刘理, 曾伟. 大功率磁控管用新型Y2Hf2O7陶瓷阴极研究. 物理学报, 2020, 69(3): 037901. doi: 10.7498/aps.69.20191496
    [3] 张兴玉. 电流密度对微米硅电极断裂行为的影响. 物理学报, 2020, 69(24): 248201. doi: 10.7498/aps.69.20200915
    [4] 郝广辉, 李泽鹏, 高玉娟, 周亚昆. 表面形貌对热阴极电子发射特性的影响. 物理学报, 2019, 68(3): 037901. doi: 10.7498/aps.68.20181725
    [5] 乔建良, 徐源, 高有堂, 牛军, 常本康. 反射式变掺杂负电子亲和势GaN光电阴极量子效率研究. 物理学报, 2017, 66(6): 067903. doi: 10.7498/aps.66.067903
    [6] 漆世锴, 王小霞, 罗积润, 赵青兰, 李云. 磁控管用新型Y2O3-Gd2O3-HfO2浸渍W基直热式阴极研究. 物理学报, 2016, 65(5): 057901. doi: 10.7498/aps.65.057901
    [7] 王益军, 严诚. 不同电场下碳纳米管场致发射电流密度研究. 物理学报, 2015, 64(19): 197304. doi: 10.7498/aps.64.197304
    [8] 陈鑫龙, 赵静, 常本康, 徐源, 张益军, 金睦淳, 郝广辉. 指数掺杂反射式GaAlAs和GaAs光电阴极比较研究. 物理学报, 2013, 62(3): 037303. doi: 10.7498/aps.62.037303
    [9] 张敏, 王小霞, 罗积润, 廖显恒. 等离子喷涂含钪氧化物阴极制备及发射特性研究. 物理学报, 2012, 61(7): 077901. doi: 10.7498/aps.61.077901
    [10] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量. 物理学报, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [11] 李飙, 常本康, 徐源, 杜晓晴, 杜玉杰, 王晓晖, 张俊举. GaN 光电阴极的研究及其发展. 物理学报, 2011, 60(8): 088503. doi: 10.7498/aps.60.088503
    [12] 郭向阳, 常本康, 王晓晖, 张益军, 杨铭. 反射式负电子亲和势GaN光电阴极的光电发射及稳定性研究. 物理学报, 2011, 60(5): 058101. doi: 10.7498/aps.60.058101
    [13] 牛军, 张益军, 常本康, 熊雅娟. GaAs光电阴极激活后的表面势垒评估研究. 物理学报, 2011, 60(4): 044210. doi: 10.7498/aps.60.044210
    [14] 牛军, 杨智, 常本康, 乔建良, 张益军. 反射式变掺杂GaAs光电阴极量子效率模型研究. 物理学报, 2009, 58(7): 5002-5006. doi: 10.7498/aps.58.5002
    [15] 王小霞, 廖显恒, 罗积润, 赵青兰, 张晓伟. 新型贮存式氧化物阴极寿命机理的初步探讨. 物理学报, 2009, 58(2): 1280-1286. doi: 10.7498/aps.58.1280
    [16] 王新庆, 李 良, 褚宁杰, 金红晓, 葛洪良. 纳米碳管阵列场发射电流密度的理论数值优化. 物理学报, 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [17] 杨少鹏, 郑红芳, 李春雷, 傅广生, 李晓苇, 许春华, 李金培. 纳米硫化镍增感的溴化银微晶中光电子衰减特性研究. 物理学报, 2006, 55(5): 2144-2148. doi: 10.7498/aps.55.2144
    [18] 刘龙平, 赵振杰, 黄灿星, 吴志明, 杨燮龙. 复合结构丝中的电流密度分布和巨磁阻抗效应. 物理学报, 2006, 55(4): 2014-2020. doi: 10.7498/aps.55.2014
    [19] 吴汉华, 汪剑波, 龙北玉, 吕宪义, 龙北红, 金曾孙, 白亦真, 毕冬梅. 电流密度对铝合金微弧氧化膜物理化学特性的影响. 物理学报, 2005, 54(12): 5743-5749. doi: 10.7498/aps.54.5743
    [20] 孙俊生, 武传松. 熔池表面形状对电弧电流密度分布的影响. 物理学报, 2000, 49(12): 2427-2432. doi: 10.7498/aps.49.2427
计量
  • 文章访问数:  7841
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-15
  • 修回日期:  2020-03-09
  • 刊出日期:  2020-05-20

/

返回文章
返回