搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同电场下碳纳米管场致发射电流密度研究

王益军 严诚

引用本文:
Citation:

不同电场下碳纳米管场致发射电流密度研究

王益军, 严诚

Field-emission current densities of carbon nanotube under the different electric fields

Wang Yi-Jun, Cheng Yan
PDF
导出引用
  • 本文运用密度泛函理论和金属电子论, 深入研究了碳纳米管场致发射电流的变化规律. 结果显示其发射电流密度取决于体系的态密度、赝能隙、管长和局域电场, 在不同范围电场下的变化规律不同. 在较低电场下, 发射电流密度随电场增强而近似线性增大(对应的宏观电场须小于18 V m-1); 但在较高电场下, 发射电流密度随外电场增加呈现非周期性振荡增长趋势, 碳纳米管表现为电离发射. 本文进一步研究了金属性碳纳米管电导率在不同电场下的变化规律.
    The field emission current variation law of carbon nanotube in a large electric field range (0-32 V m-1) is analyzed in depth by combining the density functional theory with metal electron theory. The results show that their emission current densities are determined by their densities of states, the pseudogap, the length and the local electric field, showing the different variation laws in the different electric field ranges. In the lower electric field (corresponding macroscopic field is less than 18 Vm-1), when their density of states increases, their pseudogap decreases: the two trends are opposite, the former increases the number of electrons for emission, and the latter improves the ability to transfer electrons, they all turn to the increase of the emission current, so their field-emission current density increases linearly with increasing electric field in this range. But in the higher electric field (corresponding macroscopic field is less than 32 Vm-1 and more than 18 Vm-1), their densities of states and the pseudogaps take on the same decrease and increase, so do they in the opposite change case, therefore the emission current density behaves as a non-periodic oscillation in the increasing electric field, moreover the higher electric conductivity lead to the rising of current density, the combined effect of the emitter current density exhibits an oscillatory growth in this electric field range, and the carbon nanotubes behave as ionizing radiation. So the too high electric field may cause the emission current to be instable. The electric conductivity variation law of the metallic carbon nanotube is further studied in this paper. In the lower electric field (corresponding macroscopic field is less than 5 Vm-1), the electric conductivity of CNT increases linearly with increasing electric field; when the macroscopic electric field increases up to a value in a range from 5 to 14 Vm-1, the electric conductivity only changes like a slight concussion in (6.3-9.9)1017Sm-1 range, when the macroscopic electric field increases to a value in a range from 16 to 32 Vm-1, the electric conductivity appears as a sharp oscillation growth trend. Additionally, the specific binding energy of CNT is enhanced with increasing electric field, accordingly the structural stability turns better and the cone-capped carbon nanotubes could be used for emission cathode material. The calculation results are consistent with the experimental results of the literature.
      通信作者: 王益军, wangyijun29@163.cn
    • 基金项目: 国家自然科学基金(批准号: 11075135, 61307002)、陕西省自然科学基金(批准号: 2012JM1009)、陕西省教育厅科学研究计划项目(批准号: 12JK0984)、咸阳师范学院专项科研基金项目(批准号: 12XSYK014, 13XSYK010)和咸阳师范学院教育教学改革研究项目(批准号: 201200127, 201302026)资助的课题.
      Corresponding author: Wang Yi-Jun, wangyijun29@163.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 11075135, 61307002), the Natural Science Foundation of Shaanxi Province (Grant No. 2012JM1009) and the Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant No. 12JK0984), the Scientific Research Program Funded(Grant No. 12XSYK014, 13XSYK010), and the Teaching Reform Research Program Funded by Xianyang Normal University (Program No. 201200127, 201302026), China.
    [1]

    Heer W A D, Chatelain A, Ugarte D 1995 Science 270 1179

    [2]

    Meyyappan M (translated by Liu Z F) 2005 Carbon Nanotubes: Science and Applications (Beijing: Science Press) pp223-228 (in Chinese) [M. 麦亚潘主 著 (刘忠范 译) 2007 碳纳米管科学与应用 (北京: 科学出版社) 第233228页]

    [3]

    Li X, Zhou W M, Liu W H, Wang X L 2015 Chin. Phys. B 24 057102

    [4]

    Xie Y, Zhang J M 2011 Chin. Phys. B 20 127302

    [5]

    Zhang X, Song Y R 2014 Chin. Phys. B 23 064204

    [6]

    Fowler R H, Nordheim L 1928 Proc. R. Soc. A 119 173

    [7]

    Uh H S, Park S S 2015 Diamond and Related Materials 54 74

    [8]

    Modinos A 1984 Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum Publishing Corp) pp36-37

    [9]

    Jiang J, Feng T, Cheng X H 2006 Mater. Lett. 60 1085

    [10]

    Liu X H, Zhu C C, Li Y K 2004 Physics B 344 243

    [11]

    Hartschuh A 2003 Science 301 1354

    [12]

    Qu C Q, Qiao L, Wang C, Yu S S, Zheng W T, Jiang Q 2010 Phys. Lett. A 374 782

    [13]

    Yao Z, Kane C L, Dekker C 2000 Phys. Rev. Lett. 84 2941

    [14]

    Cui Y T, Zhang X B, Lei W 2013 High Power Laser And Particle Beams 25 1509 (in Chinese) [崔云涛, 张晓兵, 雷威 2013 强激光与粒子束 25 1509]

    [15]

    Delley B J 1990 Chem. Phys. 92 508

    [16]

    Wang X Q, Li L, Zhu N J 2008 Acta Phys. Sin. 57 7173(in Chinese) [王新庆, 李良, 褚宁杰 2008 物理学报 57 7173]

    [17]

    Jo S H, Wang D Z, Huang J Y 2004 Appl. Phys. Lett. 85 810

    [18]

    Ma H L, Huo H B, Zeng F G 2013 Acta Phys. Sin. 62 158801(in Chinese) [麻华丽, 霍海波, 曾凡光 2013 物理学报 62 158801]

    [19]

    Chen C L 2007 Solid-State Physics (Beijing: Science Press) pp167-168 (in Chinese) [陈长乐 2007 固体物理 (北京: 科学出版社) 第167168页]

  • [1]

    Heer W A D, Chatelain A, Ugarte D 1995 Science 270 1179

    [2]

    Meyyappan M (translated by Liu Z F) 2005 Carbon Nanotubes: Science and Applications (Beijing: Science Press) pp223-228 (in Chinese) [M. 麦亚潘主 著 (刘忠范 译) 2007 碳纳米管科学与应用 (北京: 科学出版社) 第233228页]

    [3]

    Li X, Zhou W M, Liu W H, Wang X L 2015 Chin. Phys. B 24 057102

    [4]

    Xie Y, Zhang J M 2011 Chin. Phys. B 20 127302

    [5]

    Zhang X, Song Y R 2014 Chin. Phys. B 23 064204

    [6]

    Fowler R H, Nordheim L 1928 Proc. R. Soc. A 119 173

    [7]

    Uh H S, Park S S 2015 Diamond and Related Materials 54 74

    [8]

    Modinos A 1984 Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum Publishing Corp) pp36-37

    [9]

    Jiang J, Feng T, Cheng X H 2006 Mater. Lett. 60 1085

    [10]

    Liu X H, Zhu C C, Li Y K 2004 Physics B 344 243

    [11]

    Hartschuh A 2003 Science 301 1354

    [12]

    Qu C Q, Qiao L, Wang C, Yu S S, Zheng W T, Jiang Q 2010 Phys. Lett. A 374 782

    [13]

    Yao Z, Kane C L, Dekker C 2000 Phys. Rev. Lett. 84 2941

    [14]

    Cui Y T, Zhang X B, Lei W 2013 High Power Laser And Particle Beams 25 1509 (in Chinese) [崔云涛, 张晓兵, 雷威 2013 强激光与粒子束 25 1509]

    [15]

    Delley B J 1990 Chem. Phys. 92 508

    [16]

    Wang X Q, Li L, Zhu N J 2008 Acta Phys. Sin. 57 7173(in Chinese) [王新庆, 李良, 褚宁杰 2008 物理学报 57 7173]

    [17]

    Jo S H, Wang D Z, Huang J Y 2004 Appl. Phys. Lett. 85 810

    [18]

    Ma H L, Huo H B, Zeng F G 2013 Acta Phys. Sin. 62 158801(in Chinese) [麻华丽, 霍海波, 曾凡光 2013 物理学报 62 158801]

    [19]

    Chen C L 2007 Solid-State Physics (Beijing: Science Press) pp167-168 (in Chinese) [陈长乐 2007 固体物理 (北京: 科学出版社) 第167168页]

  • [1] 马玉龙, 向伟, 金大志, 陈磊, 姚泽恩, 王琦龙. 碳纳米管薄膜场蒸发效应. 物理学报, 2016, 65(9): 097901. doi: 10.7498/aps.65.097901
    [2] 马立安, 郑永安, 魏朝晖, 胡利勤, 郭太良. 合成温度和N2/O2流量比对碳纤维衬底上生长的SnO2纳米线形貌及场发射性能影响. 物理学报, 2015, 64(23): 237901. doi: 10.7498/aps.64.237901
    [3] 向飞, 吴平, 曾凡光, 王淦平, 李春霞, 鞠炳全. 强流碳纳米管阴极快脉冲重频发射特性. 物理学报, 2015, 64(16): 164103. doi: 10.7498/aps.64.164103
    [4] 吕文辉, 张帅. 接触电阻对碳纳米管场发射的影响. 物理学报, 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [5] 左应红, 王建国, 范如玉. 二极管间隙距离对场致发射过程中空间电荷效应的影响. 物理学报, 2012, 61(21): 215202. doi: 10.7498/aps.61.215202
    [6] 袁学松, 张宇, 孙利民, 黎晓云, 邓少芝, 许宁生, 鄢扬. 碳纳米管冷阴极脉冲发射特性及仿真模型研究. 物理学报, 2012, 61(21): 216101. doi: 10.7498/aps.61.216101
    [7] 潜力, 王昱权, 刘亮, 范守善. 碳纳米管在大气压环境中的场致发射特性. 物理学报, 2011, 60(2): 028801. doi: 10.7498/aps.60.028801
    [8] 潘金艳, 张文彦, 高云龙. 基于铟锡氧化物/Ti复合电极的高亮度碳纳米管场致发射冷阴极. 物理学报, 2010, 59(12): 8762-8769. doi: 10.7498/aps.59.8762
    [9] 何春山, 王伟良, 陈桂华, 李志兵. 镜像势对碳纳米管阵列场发射特性的影响. 物理学报, 2009, 58(13): 241-S245. doi: 10.7498/aps.58.241
    [10] 覃华芳, 郭太良. 基于沉淀工艺制作四脚氧化锌纳米材料场致发射阴极的研究. 物理学报, 2008, 57(2): 1224-1228. doi: 10.7498/aps.57.1224
    [11] 秦玉香, 胡 明. 钛碳化物改性碳纳米管的场发射性能. 物理学报, 2008, 57(6): 3698-3702. doi: 10.7498/aps.57.3698
    [12] 廖庆亮, 张 跃, 黄运华, 齐俊杰, 高战军, 夏连胜, 张 篁. 碳纳米管阴极的短脉冲爆炸场发射与等离子体膨胀. 物理学报, 2008, 57(3): 1778-1783. doi: 10.7498/aps.57.1778
    [13] 柏 鑫, 王鸣生, 刘 洋, 张耿民, 张兆祥, 赵兴钰, 郭等柱, 薛增泉. 碳纳米管端口的场蒸发. 物理学报, 2008, 57(7): 4596-4601. doi: 10.7498/aps.57.4596
    [14] 王新庆, 李 良, 褚宁杰, 金红晓, 葛洪良. 纳米碳管阵列场发射电流密度的理论数值优化. 物理学报, 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [15] 郭大勃, 元 光, 宋翠华, 顾长志, 王 强. 碳纳米管的变温场发射. 物理学报, 2007, 56(10): 6114-6117. doi: 10.7498/aps.56.6114
    [16] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [17] 陈荣华, 朱明原, 李 瑛, 李文献, 金红明, 窦士学. 脉冲磁场处理对碳纳米管掺杂MgB2线材临界电流密度的影响. 物理学报, 2006, 55(9): 4878-4882. doi: 10.7498/aps.55.4878
    [18] 林志贤, 郭太良, 胡利勤, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 四角状氧化锌纳米材料的场致发射平板显示器. 物理学报, 2006, 55(10): 5531-5534. doi: 10.7498/aps.55.5531
    [19] 丁 佩, 晁明举, 梁二军, 郭新勇. 不同氮源制备CNx纳米管薄膜及其低场致电子发射性能. 物理学报, 2005, 54(12): 5926-5930. doi: 10.7498/aps.54.5926
    [20] 丁 佩, 晁明举, 梁二军, 郭新勇, 杜祖亮. CNx纳米管的制备、结构观察及低场致电子发射性能研究. 物理学报, 2004, 53(8): 2786-2791. doi: 10.7498/aps.53.2786
计量
  • 文章访问数:  6531
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-01
  • 修回日期:  2015-06-07
  • 刊出日期:  2015-10-05

/

返回文章
返回