搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多功能多元稀土六硼化物La1–x Srx B6光吸收及热电子发射机理

张红艳 包黎红 潮洛蒙 赵凤岐 刘子忠

引用本文:
Citation:

多功能多元稀土六硼化物La1–x Srx B6光吸收及热电子发射机理

张红艳, 包黎红, 潮洛蒙, 赵凤岐, 刘子忠

Optical absorption and thermionic emission mechanism of multi-functional La1–x Srx B6 hexaborides

Zhang Hong-Yan, Bao Li-Hong, Chao Luo-Meng, Zhao Feng-Qi, Liu Zi-Zhong
PDF
HTML
导出引用
  • 系统研究了多功能多元稀土六硼化物La1–x Srx B6纳米粉末的光吸收及多晶块体的热电子发射性能. 纳米粉体光吸收结果表明, 多元稀土六硼化物La1–x SrxB6透射光波长从591 nm至658 nm连续可调. 多晶块体热电子发射结果表明, 外加电压2000 V, 阴极温度为1773 K时, 热电子发射电流密度从2.3 A/cm2线性增大至19.36 A/cm2, 表现出了热发射性能增强效果. 因此, 多元稀土六硼化物La1–x Srx B6为一种多功能材料, 在光吸收材料及热阴极材料领域具有潜在的应用前景. 此外, 为了揭示上述光吸收及热发射机理, 采用第一性原理系统计算体等离子共振频率能量和费米能级变化规律.
    The optical absorption property of the nanocrystalline La1–x Srx B6 powder and thermionic emission property of the La1–x Srx B6 polycrystalline bulk are investigated. As a result, the transmission wavelength of LaB6 is red-shifted from 591 nm to 658 nm with the increase of Sr doping content. The emission tests indicate that the thermionic emission current density of La1–x Srx B6 polycrystalline bulk increases from 2.3 A/cm2 to 19.36 A/cm2 with the increase of La doping content under an applied voltage of 2000 V. The first-principle calculation results reveal that Sr doping LaB6 leads plasma frequency energy and Fermi level to decrease, resulting in the tunable characteristics of transmission wavelength and enhancement of thermionic emission. Therefore, the Sr-doped LaB6 as a multifunctional ceramic has a potential application in the field of optical filter or becomes a promising cathode for microwave device.
      通信作者: 包黎红, baolihong@imnu.edu.cn
    • 基金项目: 内蒙古自治区自然科学基金(批准号: 2019LH05001)和国家自然科学基金(批准号: 51662034)资助的课题
      Corresponding author: Bao Li-Hong, baolihong@imnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2019LH05001) and the National Natural Science Foundation of China (Grant No. 51662034).
    [1]

    Kirley M P, Novakovic B, Sule N, Weber M J, Knezevic I, Booske J H 2012 J. Appl. Phys. 111 063717Google Scholar

    [2]

    Xu J Q, Hou G H, Li H Q, Zhai T Y, Dong B P, Yan H L, Wang Y R, Yu B H, Bando Y, Golberg D 2013 NPG Asia Mater. 5 547Google Scholar

    [3]

    Kumari M, Gautam S, Shah P V, Pal S, Ojha U S, Kumar A, Naik A A, Rawat J S, Chaudhury P K, Harsh, Tandon R P 2012 Appl. Phys. Lett. 101 4995Google Scholar

    [4]

    Yuan Y F, Zhang L, HuLJ, Wang W, Min G H 2011 J. Solid State Chem. 184 3364Google Scholar

    [5]

    Tang H B, Su Y C, Tan J, Hu T, GongJY, Xiao L H 2014 Superattice Microst. 75 908Google Scholar

    [6]

    Chao L M, Bao L H, Wei W, Tegus O, Zhang Z D 2016 J. Alloys. Compd. 672 419Google Scholar

    [7]

    Mattox T M, Agrawal A, Milliron D J 2015 Chem. Mater. 27 6620Google Scholar

    [8]

    Chen M C, Lin Z W, Ling M H 2016 Acs Nano 10 93Google Scholar

    [9]

    Chen C J, Chen D H 2012 Chem. Eng. 180 337Google Scholar

    [10]

    Tang S L, Huang W C, Gao Y, An N, Wu Y D, Yang B, Yan M, Cao J Y, Guo C S 2021 J. Mater. Chem. B 9 4380Google Scholar

    [11]

    Takeda H, Kuno H, Adachi K 2008 J. Am. Ceram. Soc. 91 2897Google Scholar

    [12]

    Schelm S, Smith G B 2003 Appl. Phys. Lett. 82 4346Google Scholar

    [13]

    Adachi K, Miratsu M, Asahi T 2010 J. Mater. Res. 25 510Google Scholar

    [14]

    Schelm S, Smith G B, Grrett P D, Fisher W K 2005 J. Appl. Phys. 97 124314Google Scholar

    [15]

    Smith G B 2002 Mater. Forum. 26 20

    [16]

    Bao L H, Qi X P, Ta N, Chao L M, Tegus O 2016 Phys. Chem. Chem. Phys. 18 19165Google Scholar

    [17]

    Bao L H, Chao L M, Wei W, Tegus O 2015 Mater. Lett. 139 187Google Scholar

    [18]

    Bao L H, Qi X P, Bao T N, Tegus O 2018 J. Alloy. Compd. 731 332Google Scholar

    [19]

    Zhou S L, Zhang J X, Bao L H, Yu X G, Hu Q L, Hu D Q 2014 J. Alloys. Compd. 611 130Google Scholar

    [20]

    Hasan M M, Cuskelly D, Sugo H, Kisi E H 2015 J. Alloy. Compd. 636 37Google Scholar

    [21]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [22]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Chao L M, Bao L H, Shi J J, Wei W, Tegus O, Zhang Z D 2015 J. Alloy. Compd. 622 618Google Scholar

    [25]

    Liu H L, Zhang X, Ning S Y 2017 Vacuum 143 245Google Scholar

    [26]

    Bao L H, Ming M, Tegus O 2015 J. Inorg. Mater. 30 1110Google Scholar

    [27]

    Xiao L H, Su Y C, Zhou X Z, Chen H Y, Tan J, Hu T, Yan J, Peng P 2012 Appl. Phys. Lett. 101 041913Google Scholar

    [28]

    Kimura S, Nanba T, Kunii S, Kasuya T 1990 Phys. Rev. B 59 3388Google Scholar

    [29]

    Kauer E 1963 Phys. Lett. 7 171Google Scholar

    [30]

    Kimura S, Nanba T, Kunii S, Suzuki T, Kasuya T 1990 Solid State Commun. 75 717Google Scholar

    [31]

    Bao L H, Qi X P, Ta N, Chao L M, Tegus O 2016 Cryst. Eng. Comm. 18 1223Google Scholar

    [32]

    Xin S W, Liu S C, Wang N, Han X Y, Wang L M, Xu B, Tian Y J, Liu Z Y, He J L, Yu D L 2011 J. Alloy. Compd. 509 7927Google Scholar

    [33]

    Zheng S, Zou Z, Min G, Yu H S, Han J D, Wang W T 2002 J. Mater. Sci. Lett. 21 313Google Scholar

    [34]

    Wang J, Zhu C, Meng F S, Liu G B, Gu Y, Wang H D, Gao S S, Wang K M 2018 Mod. Phys. Lett. B 32 1850007Google Scholar

    [35]

    Futamoto M, Nakazawa M, Kawabe U 1980 Surf. Sci 100 470Google Scholar

    [36]

    Swanson L W, Mcneely D R 1979 Surf. Sci 83 11Google Scholar

    [37]

    周身林, 张久兴, 刘丹敏 2010 强激光与离子束 22 171Google Scholar

    Zhou S L, Zhang J X, Liu D M 2010 High Power Laser and Particle Beams 22 171Google Scholar

  • 图 1  La0.825Sr0.125B6晶体结构示意图

    Fig. 1.  Schematic diagram of the La0.825Sr0.125B6 crystal structure.

    图 2  (a)不同反应温度下制备的La0.4Sr0.6B6纳米颗粒的XRD谱图; (b) 1150 ℃下制备的La1–x Srx B6纳米颗粒的XRD谱图

    Fig. 2.  (a) XRD pattern of La0.4Sr0.6B6 nanoparticles prepared at different reaction temperatures; (b) XRD pattern of La1–x Srx B6 nanoparticles prepared at 1150 ℃.

    图 3  不同反应温度下所制备的纳米La1–x Srx B6 (x = 0.2, 0.4, 0.6, 0.8)粉末SEM照片 (a)—(d)反应温度为1150 ℃; (e)—(h)反应温度为1200℃. 最底层为纳米La0.4Sr0.6B6粉末元素分布及EDS分析

    Fig. 3.  SEM image of La1–x Srx B6 (x = 0.2, 0.4, 0.6, 0.8) nanoparticles (a)−(d) prepared at 1150 ℃, (e)−(h) prepared at 1200 ℃. The lowest side shows the elements mapping and EDS analysis of La0.4Sr0.6B6 nanoparticles.

    图 4  纳米La0.4Sr0.6B6粉末的(a) TEM照片、(b)单颗粒形貌照片、(c) HRTEM照片; (d)图(c)的傅里叶(FFT)变换; (e)—(g)所选择的单晶颗粒的La, Sr, B元素分布图

    Fig. 4.  (a) TEM image of La0.4Sr0.6B6 nanoparticles; (b) selected single crystal morphology; (c) HRTEM image for selected single crystal; (d) indexing FFT patterns from panel (c); (e)−(g) La , Sr , B element mapping for selected single crystal .

    图 5  纳米La1–x Srx B6 (x = 0 (a), 0.2 (b), 0.4 (c), 0.6 (d), 0.8 (e))粉末的光学吸收曲线

    Fig. 5.  Optical absorption spectrum of La1–x Srx B6 (x = 0 (a), 0.2 (b), 0.4 (c), 0.6 (d), 0.8 (e)) nanoparticles.

    图 6  La0.875Sr0.125B6晶体的态密度的第一性原理计算结果

    Fig. 6.  First-principle calculation results of density of states of La0.875Sr0.125B6 crystal.

    图 7  La0.875Sr0.125B6晶体的(a)介电函数和(b)能量损失谱

    Fig. 7.  (a) Dielectric function and (b) loss function spectra of La0.875Sr0.125B6 crystal.

    图 8  单晶SrB6的(a) (100)面、(b) (110)面、(c) (111)面、(d) (210)面的结构示意图及逸出功计算结果; (e) SrB6多晶块体的热电子发射电流密度随外加电压变化曲线; (f) SrB6多晶块体的lgJ-U 0.5曲线

    Fig. 8.  Schematic diagram of (a) (100) surface, (b) (110) surface, (c) (111) surface, (d) (210) surface of single crystal SrB6 and the calculated results of escape work; (e) thermionic emission current density of SrB6 polycrystalline bulk with applied voltage; (f) lgJ-U 0.5 curves of SrB6 polycrystalline bulk.

    图 9  La1–x Srx B6多晶块体的热电子发射电流密度 (a) x = 0.8; (b) x = 0.6; (c) x = 0.4; (d) x = 0.2

    Fig. 9.  Thermionic emission current density of La1–x Srx B6 bulks: (a) x = 0.8; (b) x = 0.6; (c) x = 0.4; (d) x = 0.2.

    图 10  La1–x Srx B6多晶块体肖特基外延曲线 (a) x = 0.8; (b) x = 0.6; (c) x = 0.4; (d) x = 0.2

    Fig. 10.  Typical Schottky plots for La1–x Srx B6 bulks: (a) x = 0.8; (b) x = 0.6; (c) x = 0.4; (d) x = 0.2.

    图 11  所提出的La1–x Srx B6增强热电子发射机理示意图

    Fig. 11.  Proposed mechanism of the La1–x Srx B6 enhanced thermionic emission.

    表 1  La1–x Srx B6 (x =1, 0.8, 0.6, 0.4, 0.2)多晶块体的零场发射电流密度J0和有效逸出功φe

    Table 1.  Zero field emission current density J0 and the effective escape work φe of the polycrystalline block La1–x Srx B6 (x = 1, 0.8, 0.6, 0.4, 0.2).

    Compound零场发射电流密度(J0)有效逸出功
    φe/
    eV
    1673 K1773 K
    SrB60.971.792.845
    La0.2Sr0.8B61.674.732.691
    La0.4Sr0.6B63.58.72.585
    La0.6Sr0.4B64.18.32.573
    La0.8Sr0.2B65.39102.552
    下载: 导出CSV
  • [1]

    Kirley M P, Novakovic B, Sule N, Weber M J, Knezevic I, Booske J H 2012 J. Appl. Phys. 111 063717Google Scholar

    [2]

    Xu J Q, Hou G H, Li H Q, Zhai T Y, Dong B P, Yan H L, Wang Y R, Yu B H, Bando Y, Golberg D 2013 NPG Asia Mater. 5 547Google Scholar

    [3]

    Kumari M, Gautam S, Shah P V, Pal S, Ojha U S, Kumar A, Naik A A, Rawat J S, Chaudhury P K, Harsh, Tandon R P 2012 Appl. Phys. Lett. 101 4995Google Scholar

    [4]

    Yuan Y F, Zhang L, HuLJ, Wang W, Min G H 2011 J. Solid State Chem. 184 3364Google Scholar

    [5]

    Tang H B, Su Y C, Tan J, Hu T, GongJY, Xiao L H 2014 Superattice Microst. 75 908Google Scholar

    [6]

    Chao L M, Bao L H, Wei W, Tegus O, Zhang Z D 2016 J. Alloys. Compd. 672 419Google Scholar

    [7]

    Mattox T M, Agrawal A, Milliron D J 2015 Chem. Mater. 27 6620Google Scholar

    [8]

    Chen M C, Lin Z W, Ling M H 2016 Acs Nano 10 93Google Scholar

    [9]

    Chen C J, Chen D H 2012 Chem. Eng. 180 337Google Scholar

    [10]

    Tang S L, Huang W C, Gao Y, An N, Wu Y D, Yang B, Yan M, Cao J Y, Guo C S 2021 J. Mater. Chem. B 9 4380Google Scholar

    [11]

    Takeda H, Kuno H, Adachi K 2008 J. Am. Ceram. Soc. 91 2897Google Scholar

    [12]

    Schelm S, Smith G B 2003 Appl. Phys. Lett. 82 4346Google Scholar

    [13]

    Adachi K, Miratsu M, Asahi T 2010 J. Mater. Res. 25 510Google Scholar

    [14]

    Schelm S, Smith G B, Grrett P D, Fisher W K 2005 J. Appl. Phys. 97 124314Google Scholar

    [15]

    Smith G B 2002 Mater. Forum. 26 20

    [16]

    Bao L H, Qi X P, Ta N, Chao L M, Tegus O 2016 Phys. Chem. Chem. Phys. 18 19165Google Scholar

    [17]

    Bao L H, Chao L M, Wei W, Tegus O 2015 Mater. Lett. 139 187Google Scholar

    [18]

    Bao L H, Qi X P, Bao T N, Tegus O 2018 J. Alloy. Compd. 731 332Google Scholar

    [19]

    Zhou S L, Zhang J X, Bao L H, Yu X G, Hu Q L, Hu D Q 2014 J. Alloys. Compd. 611 130Google Scholar

    [20]

    Hasan M M, Cuskelly D, Sugo H, Kisi E H 2015 J. Alloy. Compd. 636 37Google Scholar

    [21]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [22]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Chao L M, Bao L H, Shi J J, Wei W, Tegus O, Zhang Z D 2015 J. Alloy. Compd. 622 618Google Scholar

    [25]

    Liu H L, Zhang X, Ning S Y 2017 Vacuum 143 245Google Scholar

    [26]

    Bao L H, Ming M, Tegus O 2015 J. Inorg. Mater. 30 1110Google Scholar

    [27]

    Xiao L H, Su Y C, Zhou X Z, Chen H Y, Tan J, Hu T, Yan J, Peng P 2012 Appl. Phys. Lett. 101 041913Google Scholar

    [28]

    Kimura S, Nanba T, Kunii S, Kasuya T 1990 Phys. Rev. B 59 3388Google Scholar

    [29]

    Kauer E 1963 Phys. Lett. 7 171Google Scholar

    [30]

    Kimura S, Nanba T, Kunii S, Suzuki T, Kasuya T 1990 Solid State Commun. 75 717Google Scholar

    [31]

    Bao L H, Qi X P, Ta N, Chao L M, Tegus O 2016 Cryst. Eng. Comm. 18 1223Google Scholar

    [32]

    Xin S W, Liu S C, Wang N, Han X Y, Wang L M, Xu B, Tian Y J, Liu Z Y, He J L, Yu D L 2011 J. Alloy. Compd. 509 7927Google Scholar

    [33]

    Zheng S, Zou Z, Min G, Yu H S, Han J D, Wang W T 2002 J. Mater. Sci. Lett. 21 313Google Scholar

    [34]

    Wang J, Zhu C, Meng F S, Liu G B, Gu Y, Wang H D, Gao S S, Wang K M 2018 Mod. Phys. Lett. B 32 1850007Google Scholar

    [35]

    Futamoto M, Nakazawa M, Kawabe U 1980 Surf. Sci 100 470Google Scholar

    [36]

    Swanson L W, Mcneely D R 1979 Surf. Sci 83 11Google Scholar

    [37]

    周身林, 张久兴, 刘丹敏 2010 强激光与离子束 22 171Google Scholar

    Zhou S L, Zhang J X, Liu D M 2010 High Power Laser and Particle Beams 22 171Google Scholar

  • [1] 李涵汐, 王德真. 热电子发射对钨偏滤器靶板附近磁化鞘层影响的模拟研究. 物理学报, 2023, 72(15): 159401. doi: 10.7498/aps.72.20230276
    [2] 潘晓剑, 包黎红, 宁军, 赵凤岐, 朝洛蒙, 刘子忠. 多元纳米稀土六硼化物Nd1–xEuxB6粉末的制备及光吸收研究. 物理学报, 2021, 70(3): 036101. doi: 10.7498/aps.70.20201288
    [3] 余鹏, 王保清, 吴小虎, 王文昊, 徐红星, 王志明. 蜂窝状椭圆孔洞吸收器圆二色性研究. 物理学报, 2020, 69(20): 207101. doi: 10.7498/aps.69.20200843
    [4] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [5] 程大伟, 包黎红, 张红艳, 潘晓剑, 那仁格日乐, 赵凤岐, 特古斯, 朝洛濛. 蒸发冷凝法制备超细CeB6和SmB6纳米粉末及可见光穿透特性. 物理学报, 2019, 68(24): 246101. doi: 10.7498/aps.68.20191312
    [6] 徐峰, 于国浩, 邓旭光, 李军帅, 张丽, 宋亮, 范亚明, 张宝顺. Pt/Au/n-InGaN肖特基接触的电流输运机理. 物理学报, 2018, 67(21): 217802. doi: 10.7498/aps.67.20181191
    [7] 任超, 李秀燕, 落全伟, 刘瑞萍, 杨致, 徐利春. 空位缺陷对-AgVO3电子结构和光吸收性能的影响. 物理学报, 2017, 66(15): 157101. doi: 10.7498/aps.66.157101
    [8]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质. 物理学报, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [9] 包黎红, 朝洛蒙, 伟伟, 特古斯. 稀土硼化物LaxCe1-xB6亚微米粉的制备及光吸收研究. 物理学报, 2015, 64(9): 096104. doi: 10.7498/aps.64.096104
    [10] 薛斌, 王洪阳, 秦猛, 曹毅, 王炜. 基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台. 物理学报, 2015, 64(9): 098702. doi: 10.7498/aps.64.098702
    [11] 蒲年年, 李海蓉, 谢龙珍. NiOx作为空穴传输层对有机太阳能电池光吸收的影响. 物理学报, 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [12] 包黎红, 那仁格日乐, 特古斯, 张忻, 张久兴. 放电等离子烧结原位合成LaxCe1-xB6化合物及性能研究. 物理学报, 2013, 62(19): 196105. doi: 10.7498/aps.62.196105
    [13] 彭凯, 刘大刚. 三维热场致发射模型的数值模拟与研究. 物理学报, 2012, 61(12): 121301. doi: 10.7498/aps.61.121301
    [14] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究. 物理学报, 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [15] 熊大元, 李志锋, 陈效双, 李 宁, 甄红楼, 陆 卫. 用金属小球进行长波量子阱红外探测器的光耦合. 物理学报, 2007, 56(11): 6648-6653. doi: 10.7498/aps.56.6648
    [16] 杨 光, 陈正豪. 脉冲激光沉积Ag:BaTiO3纳米复合薄膜及其光学特性. 物理学报, 2006, 55(8): 4342-4346. doi: 10.7498/aps.55.4342
    [17] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [18] 秦 华, 傅汝廉, 郜洪云, 刘 娟, 史心刚. 三能级固体激光介质对抽运光吸收的理论研究. 物理学报, 2005, 54(4): 1587-1592. doi: 10.7498/aps.54.1587
    [19] 张琦锋, 侯士敏, 张耿民, 刘惟敏, 薛增泉, 吴锦雷. Ag-BaO薄膜在电场作用下的可见——近红外波段光学吸收特性. 物理学报, 2001, 50(3): 561-565. doi: 10.7498/aps.50.561
    [20] 王银海, 牟季美, 蔡维理, 许彦旗. 纳米Cu/Al2O3组装体模板合成与光吸收. 物理学报, 2001, 50(9): 1751-1755. doi: 10.7498/aps.50.1751
计量
  • 文章访问数:  4573
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 修回日期:  2021-07-04
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回