-
金核银壳(Au@Ag)纳米颗粒兼具金的稳定性、生物相容性及银的优异电磁响应特性,在纳米医学、环境保护、传感和光学等领域具有重要应用价值。Au@Ag纳米长方体因其结构的各向异性,特别是表面等离激元共振(SPR)效应,在基础科学研究中扮演着重要角色。本研究通过晶种法,即在水相中调控Au纳米棒种子的尺寸、长径比(AR)及Ag前驱体用量,制备了形貌、尺寸与光学性质均可控的Au@Ag纳米长方体。实验表明,当Au纳米棒直径大于100 nm时,Au@Ag纳米长方体的顶角出现截断;当Au纳米棒直径小于100 nm时,Au@Ag纳米长方体的顶角随Au纳米棒AR的减小而变得更尖(~90°)。值得注意的是,当Au纳米棒的AR在一定范围内(~1.39到~3.15)时,均可生长形貌良好(顶角尖锐)的Au@Ag纳米长方体,这一发现为研究纳米长方体顶角的变化提供了一定参考。另外,纳米长方体的长度(~110 nm到~141 nm)与宽度(~60 nm到~104 nm)可通过调节硝酸银的量实现精准调控。同时,模拟计算结果表明,相对于纳米棒而言,Au@Ag纳米长方体不仅具有丰富的多级SPR模式,其尖角可产生巨大的电场增强。本研究进一步拓展了其在多个高科技产业中的应用前景。
-
关键词:
- 晶种法 /
- Au@Ag纳米长方体 /
- 形貌 /
- 表面等离激元共振
Au@Ag core-shell nanoparticles have emerged as promising platforms for photonic applications due to their synergistic integration of gold’s biocompatibility and silver’s exceptional plasmonic properties. And Nanoparticles with sharp corners exhibit electron accumulation at the tips under electromagnetic fields, generating enhanced localized electric fields. This phenomenon facilitates their applications in surface-enhanced Raman spectroscopy (SERS) and strong coupling interactions, among other fields. So, when Au@Ag core-shell nanoparticles coupled with sharp corners, there will be outstanding performance in trace molecule detection, biosensing and catalytic applications. This study systematically investigates the seed-mediated synthesis of Au@Ag nanocuboids with tunable morphology, size and surface plasmon resonance (SPR) by using gold nanorod (AuNR) seeds with different dimensions and adjusting the volume of silver precursors. Key synthesis parameters, including AuNR diameters, aspect ratios and AgNO3 volumes, are modulated to achieve morphological, size and optical control. In experiments adjusting the size of AuNR seeds for synthesizing Au@Ag nanocuboids, as the diameter of AuNR decreases from 136.5±5 nm to 11.2±2 nm and the aspect ratio increases from 1.39 to 8.20, the aspect ratio of Au@Ag nanocuboids increases from 1.18 to 2.69. Notably, when the diameter of AuNR is below 100 nm, the sharpness of the corners of Au@Ag nanocuboids progressively improves with increasing diameter and decreasing aspect ratio of the AuNRs. However, when the AuNR diameter exceeds 100 nm, the corners of the synthesized Au@Ag nanocuboids exhibit truncation. Meanwhile, the extinction spectrum reveals that, apart from the broadened and indistinct peaks caused by the size effect, Au@Ag nanocuboids can primarily excite the longitudinal plasmon resonance mode, transverse plasmon resonance mode, and octupolar plasmon resonance modes. Furthermore, the plasmon resonance peaks exhibit corresponding shifts in response to changes in the size and morphology of Au@Ag nanocuboids. Meanwhile, neither the characterization results of high-resolution transmission electron microscopy (HRTEM) nor selected area electron diffraction (SAED) can observe {111} crystal planes, indicating that the Au@Ag nanocuboids with the sharpest corners remains untruncated and exhibits an exceptional morphology. And high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with energy-dispersive X-ray spectroscopy (EDS) characterization reveals that the silver shell exhibits anisotropic growth features on the gold core, with its transverse thickness being significantly greater than the longitudinal thickness. Besides, Au@Ag nanocuboids dimensions are linearly regulated by the volume of AgNOO3 (100 mM) from 5 μL to 30 μL, yielding tunable lengths (110.3 ±7.8 nm to 141.3 ±5.5 nm), widths (59.7 ±2.1 nm to 103.7 ±5.6 nm), aspect ratios (1.85 to 1.36) and corresponding plasmon resonance peaks as validated by SEM and extinction spectrum. The simulation results of their extinction spectra are in better agreement with the experimental measurements, and for the nanocuboid with aspect ratio of 1.45, the strength of the electric field at the corners shows a tendency to be enhanced and then weakened with the decreasing of the sharpness of the top corners (r/L = 0.2% - 11.5%), in which the strength of the electric field enhancement is greatest at r/L = 0.5%.
This work synthesizes Au@Ag nanocuboids with controllable sharpness of corners and dimension by adjusting the size and aspect ratio of AuNRs or changing the amount of silver precursors. The method proposed in this study for synthesizing sharp-cornered Au@Ag nanocuboids provides possibilities for customized fabrication of Au@Ag nanocuboids, thereby expanding their application prospects in nanophotonics, catalysis, sensing, photothermal therapy and other fields.-
Keywords:
- seed-mediated synthesis /
- Au@Ag nanocuboids /
- morphology /
- surface plasmon resonance
-
[1] Mendez E, Fagundez P, Sosa P, Gutierrez M V, Botasini S 2021 Nanotechnology 32 045603
[2] Bi C, Yin X, Zhao H 2024 RSC Adv. 14 20145
[3] Xiong L, Ding H W, Li G Y 2022 Acta Phys. Sin. 71 047802(熊磊,丁洪伟,李光 元.银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体模式2022物 理学报71 047802)
[4] Lee D, Yoon S 2016 J. Phys. Chem. C 120 20642
[5] McLellan J M, Siekkinen A, Chen J, Xia Y 2006 Chem. Phys. Lett. 427 122
[6] Rycenga M, Camargo P H, Li W, Moran C H, Xia Y 2010 J. Phys. Chem. Lett. 1 696
[7] Zhong J, Li J Y, Liu J, Xiang Y, Feng H, Liu R, Li W, Wang X H 2024 Nano Lett. 24 1579
[8] Li J, Wang Q, Wang J, Li M, Zhang X, Luan L, Li P, Xu W 2021 Anal. Bioanal. Chem. 413 4207
[9] Lin S, Guan H, Liu Y, Huang S, Li J, Hasi W, Xu Y, Zou J, Dong B 2021 ACS Appl. Mater. Interfaces 13 53289
[10] Ma Y, Li W, Cho E C, Li Z, Yu T, Zeng J, Xie Z, Xia Y 2010 ACS Nano 4 6725
[11] Liu K-K, Tadepalli S, Tian L, Singamaneni S 2015 Chem. Mater. 27 5261
[12] Xing C, Zhong S, Yu J, Li X, Cao A, Men D, Wu B, Cai W, Li Y 2020 J. Mater. Chem. C 8 3838
[13] Cho E C, Camargo P H C, Xia Y 2010 Adv. Mater. 22 744
[14] Zheng Y, Zhong X, Li Z, Xia Y 2013 Part. Part. Syst. Char. 31 266
[15] Sanchez-Iglesias A, Winckelmans N, Altantzis T, Bals S, Grzelczak M, Liz-Marzan L M 2017 J. Am. Chem. Soc. 139 107
[16] Park J E, Lee Y, Nam J M 2018 Nano Lett. 18 6475
[17] Lin S, Lin X, Han S, He L, Zhao H, Zhang J, Hasi W, Wang L 2019 J. Alloys Compd. 805 318
[18] Okuno Y, Nishioka K, Kiya A, Nakashima N, Ishibashi A, Niidome Y 2010 Nanoscale 2 1489
[19] Park K, Drummy L F, Vaia R A 2011 J. Mater. Chem. 21 15608
[20] Tebbe M, Kuttner C, Mayer M, Maennel M, Pazos-Perez N, König T A F, Fery A 2015 J. Phys. Chem. C 119 9513
[21] Jiang R, Chen H, Shao L, Li Q, Wang J 2012 Adv. Mater. 24 OP200
[22] Vernier C, Portalès H 2024 J. Chem. Phys. 161 124711
[23] Hamon C, Constantin D 2020 J. Phys. Chem. C 124 21717
[24] Chang S T, Dong W Y, Chen K C, He Y, Yen Y A, Kao C W, Deng J P 2021 J. Chin. Chem. Soc. 68 512
[25] He B, Liu X, Chen L 2023 Nano Lett. 23 3963
[26] Gómez-Graña S, Goris B, Altantzis T, Fernández-López C, Carbó-Argibay E, Guerrero-Martínez A, Almora-Barrios N, López N, Pastoriza-Santos I, Pérez-Juste J, Bals S, Van Tendeloo G, Liz-Marzán L M 2013 J. Phys. Chem. Lett. 4 2209
[27] Ye X, Zheng C, Chen J, Gao Y, Murray C B 2013 Nano Lett. 13 765
[28] Vigderman L, Zubarev E R 2013 Chem. Mater. 25 1450
[29] Thambi V, Kar A, Ghosh P, Paital D, Gautam A R S, Khatua S 2019 ACS Omega 4 13733
[30] da Silva J A, Netz P A, Meneghetti M R 2025 J. Chem. Inf. Model. 65 2730
[31] da Silva J A, Netz P A, Meneghetti M R 2020 Langmuir 36 257
[32] Jing H, Zhang Q, Large N, Yu C, Blom D A, Nordlander P, Wang H 2014 Nano Lett. 14 3674
[33] Jiang R, Chen H, Shao L, Li Q, Wang J 2012 Adv. Mater. 24 OP200
[34] Hamasaki Y, Nakashima N, Niidome Y 2012 J. Phys. Chem. C 117 2521
[35] Xia Y, Xia X, Peng H C 2015 J. Am. Chem. Soc. 137 7947
[36] Herrmann L O, Baumberg J J 2013 Small 9 3743
[37] König T, Kodiyath R, Combs Z A, Mahmoud M A, El-Sayed M A, Tsukruk V V 2013 Part. Part. Syst. Char. 31 274
[38] Liu M, Pang Y, Zhang B, De Luna P, Voznyy O, Xu J, Zheng X, Dinh C T, Fan F, Cao C, de Arquer F P G, Safaei T S, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley S O, Sargent E H 2016 Nature 537 382
[39] Pena-Rodriguez O, Diaz-Nunez P, Gonzalez-Rubio G, Manzaneda-Gonzalez V, Rivera A, Perlado J M, Junquera E, Guerrero-Martinez A 2020 Sci. Rep. 10 5921
[40] Guo P, Sikdar D, Huang X, Si K J, Xiong W, Gong S, Yap L W, Premaratne M, Cheng W 2015 Nanoscale 7 2862
[41] Tan S F, Wu L, Yang J K W, Bai P, Bosman M, Nijhuis C A 2014 Science 343 1496
[42] Pramod P, Thomas K G 2008 Adv. Mater. 20 4300
[43] Li N, Han Z, Huang Y, Liang K, Wang X, Wu F, Qi X, Shang Y, Yu L, Ding B 2020 J. Mater. Chem. C 8 7672
[44] Hu H, Zhang S, Xu H 2019 Phys. Rev. A 99 033815
[45] Lee Y M, Kim S E, Park J E 2023 Nano Converg. 10 34
[46] Yang X, Li J, Zhao Y, Yang J, Zhou L, Dai Z, Guo X, Mu S, Liu Q, Jiang C, Sun M, Wang J, Liang W 2017 Nanoscale 10 142
[47] Li Y, Zhang Y, Xu J, Kan C, Li Z, Shi D 2024 CrystEngComm 26 5799
[48] Yang T H, Ahn J, Shi S, Wang P, Gao R, Qin D 2021 Chem. Rev. 121 796
计量
- 文章访问数: 25
- PDF下载量: 2
- 被引次数: 0