搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无序非厄米Su-Schrieffer-Heeger中的趋肤效应

刘佳琳 庞婷方 杨孝森 王正岭

引用本文:
Citation:

无序非厄米Su-Schrieffer-Heeger中的趋肤效应

刘佳琳, 庞婷方, 杨孝森, 王正岭

Skin effect in disordered non-Hermitian Su-Schrieffer-Heeger

Liu Jia-Lin, Pang Ting-Fang, Yang Xiao-Sen, Wang Zheng-Ling
PDF
HTML
导出引用
  • 近年来, 非厄米系统涌现出了大量新颖现象, 比如传统体边对应的失效、非厄米趋肤效应(non-Hermitian skin effect)等等. 本文通过逆参与率和平均逆参与率,研究非厄米Su-Schrieffer-Heeger (SSH)模型的本征态的局域性以及非厄米趋肤效应, 并且研究了系统的体边对应率. 在此基础上, 进一步研究了同位无序对系统非厄米趋肤效应的影响. 发现, 由于受到拓扑保护, 无序不会破坏拓扑零能的波函数局域性, 但是会极大地影响体态的非厄米趋肤效应. 引入无序以后, 系统的体态将会迅速扩展到体内. 非厄米趋肤效应对同位无序表现了脆弱性. 当无序增强, 非厄米趋肤效应会受到很大的压制. 无序会减小系统的能隙和虚部能量. 我们的研究加深了人们对非厄米趋肤效应的认识.
    In recent years, a large number of novel phenomena such as the breakdown of conventional bulk-boundary correspondence and non-Hermitian skin effect, have emerged in non-Hermitian systems. In this work, we investigate the localization of the eigenstates and the non-Hermitian skin effect of the disordered non-Hermitian Su-Schrieffer-Heeger (SSH) model by inverse participation rate (IPR) and average inverse participation rate (MIPR). We also investigate the bulk-boundary correspondence ratio of the system. Based on the above, we further investigate the effect of disorder on the non-Hermitian skin effect and the topological properties of the NH system. We find that the disorder does not destroy the localization of the topological edge state due to the protection from the topology of the system. But the eigenstates of bulk are greatly affected by the disorder. In the presence of disorder, the eigenstates of the bulk will rapidly extend into the bulk. Thus, the non-Hermitian skin effect is vulnerable to the disorder. When the disorder is enhanced, the non-Hermitian skin effect will be greatly suppressed. We also show that the disorder will reduce the energy gap and imaginary energy of the system. Our study contributes to the further understanding of the non-Hermitian skin effect.
      通信作者: 王正岭, zlwang@ujs.edu.cn
      Corresponding author: Wang Zheng-Ling, zlwang@ujs.edu.cn
    [1]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [2]

    Moore J E, Balents L 2007 Phys. Rev. B 75 121306Google Scholar

    [3]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [4]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [5]

    陈增军, 宁西京 2003 物理学报 52 2683Google Scholar

    Chen Z J, Ning X J 2003 Acta Phys. Sin. 52 2683Google Scholar

    [6]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [7]

    王洪飞, 解碧野, 詹鹏, 卢明辉, 陈延锋 2019 物理学报 68 224206Google Scholar

    Wang H F, Xie B Y, Zhan P, Lu M H, Chen Y F 2019 Acta Phys. Sin. 68 224206Google Scholar

    [8]

    孙孔浩, 易为 2021 物理学报 70 230309Google Scholar

    Sun K H, Yi W 2021 Acta Phys. Sin. 70 230309Google Scholar

    [9]

    沈瑞昌, 张国强, 王逸璞, 游建强 2019 物理学报 68 230305Google Scholar

    Shen R C, Zhang G Q, Wang Y P, You J Q 2019 Acta Phys. Sin. 68 230305Google Scholar

    [10]

    王学友, 王宇飞, 郑婉华 2020 物理学报 69 024202Google Scholar

    Wang X Y, Wang Y F, Zheng W H 2020 Acta Phys. Sin 69 024202Google Scholar

    [11]

    Zhou L W, Han W Q 2021 Chin. Phys. B 30 100308Google Scholar

    [12]

    Zhang S M, Jin L, Song Z 2022 Chin. Phys. B 31 010312Google Scholar

    [13]

    Wang J H, Tao Y L, Xu Y 2022 Chin. Phys. Lett. 39 010301Google Scholar

    [14]

    Cheng Z, Yu Z H 2021 Chin. Phys. Lett. 38 070302Google Scholar

    [15]

    Li L, Lee C H, Mu S, Gong J 2020 Nat. Commun. 11 5491Google Scholar

    [16]

    Lee C H, Li L, Thomale R, Gong J 2020 Phys. Rev. B 102 085151Google Scholar

    [17]

    Liu J S, Han Y Z, Liu C S 2020 Chin. Phys. B 29 010302Google Scholar

    [18]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801Google Scholar

    [19]

    Longhi S 2019 Phys. Rev. Res. 1 023013Google Scholar

    [20]

    Wang H, Ruan J, Zhang H 2019 Phys. Rev. B 99 075130Google Scholar

    [21]

    Jiang H, Lang L J, Yang C, Zhu S L, Chen S 2019 Phys. Rev. B 100 54301Google Scholar

    [22]

    Zeng Q B, Xu Y 2020 Phys. Rev. Res. 2 033052Google Scholar

    [23]

    Liu T, Zhang Y R, Ai Q, Gong Z, Kawabata K, Ueda M, Nori F 2019 Phys. Rev. Lett. 122 076801Google Scholar

    [24]

    Lee C H, Longhi S 2020 Commun. Phys. 3 147Google Scholar

    [25]

    Lee C H, Thomale R 2019 Phys. Rev. B 99 201103Google Scholar

    [26]

    Deng T S, Yi W 2019 Phys. Rev. B 100 035102Google Scholar

    [27]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801Google Scholar

    [28]

    Kawabata K, Shiozaki K, Ueda M, Sato M 2019 Phys. Rev. X 9 041015

    [29]

    Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402Google Scholar

    [30]

    Longhi S 2020 Phys. Rev. Lett. 124 066602Google Scholar

    [31]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [32]

    Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402Google Scholar

    [33]

    Yokomizo K, Murakami S 2019 Phys. Rev. Lett. 123 066404Google Scholar

    [34]

    Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [35]

    Ghatak A, Das T 2019 J. Phys. Condens. Matter 31 263001Google Scholar

    [36]

    Jin L, Song Z 2019 Phys. Rev. B 99 081103Google Scholar

    [37]

    Kawabata K, Shiozaki K, Ueda M 2018 Phys. Rev. B 98 165148Google Scholar

    [38]

    Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar

    [39]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808Google Scholar

    [40]

    Cao P C, Peng Y G, Li Y, Zhu X F 2022 Chin. Phys. Lett. 39 057801Google Scholar

    [41]

    Bergholtz E J, Budich J C, Kunst F K 2021 Rev. Mod. Phys. 93 015005Google Scholar

    [42]

    Araki H, Yoshida T, Hatsugai Y 2021 J. Phys. Soc. Jpn. 90 053703Google Scholar

    [43]

    Luo X W, Zhang C 2019 Phys. Rev. Lett. 123 073601Google Scholar

    [44]

    Yi Y, Yang Z 2020 Phys. Rev. Lett. 125 186802Google Scholar

    [45]

    Fu Y, Hu J, Wan S 2021 Phys. Rev. B 103 045420Google Scholar

    [46]

    Cao Y, Li Y, Yang X 2021 Phys. Rev. B 103 075126Google Scholar

    [47]

    Hu Y M, Song F, Wang Z 2021 Acta Phys. Sin. 70 230307Google Scholar

    [48]

    Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M, Thomale R 2020 Nature Phys. 16 747Google Scholar

    [49]

    Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R, Szameit A 2020 Science 368 311Google Scholar

    [50]

    Gou W, Chen T, Xie D, Xiao T, Deng T S, Gadway B, Yi W, Yan B 2020 Phys. Rev. Lett. 124 070402Google Scholar

    [51]

    Yoshida T, Mizoguchi T, Hatsugai Y 2020 Phys. Rev. Res. 2 022062Google Scholar

    [52]

    Mandal S, Banerjee R, Ostrovskaya E A, Liew T C H 2020 Phys. Rev. Lett. 125 123902Google Scholar

    [53]

    Gao P, Willatzen M, Christensen J 2020 Phys. Rev. Lett. 125 206402Google Scholar

    [54]

    Zhu X, Wang H, Gupta S K, Zhang H, Xie B, Lu M, Chen Y 2020 Phys. Rev. Res. 2 013280Google Scholar

    [55]

    Hofmann T, Helbig T, Schindler F, Salgo N, Brzezińska M, Greiter M, Kiessling T, Wolf D, Vollhardt A, Kabaši A, Lee C H, Bilusic A, Thomale R, Neupert T 2020 Phys. Rev. Res. 2 023265Google Scholar

    [56]

    Brandenbourger M, Locsin X, Lerner E, Coulais C 2019 Nat. Commun. 10 4608Google Scholar

    [57]

    Rosa M I N, Ruzzene M 2020 New J. Phys. 22 053004Google Scholar

    [58]

    Zhong J, Wang K, Park Y, Asadchy V, Wojcik C C, Dutt A, Fan S 2021 Phys. Rev. B 104 125416Google Scholar

    [59]

    Zhang L, Yang Y, Ge Y, Guan Y J, Chen Q, Yan Q, Chen F, Xi R, Li Y, Jia D, Yuan S Q, Sun H X, Chen H, Zhang B 2021 Nat. Commun. 12 6297Google Scholar

    [60]

    Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761Google Scholar

    [61]

    Wu H, An J H 2020 Phys. Rev. B 102 041119Google Scholar

    [62]

    Rudner M S, Lindner N H, Berg E, Levin M 2013 Phys. Rev. X 3 031005

    [63]

    Yao S, Yan Z, Wang Z 2017 Phys. Rev. B 96 195303Google Scholar

    [64]

    Li T Y, Zhang Y S, Yi W 2021 Chin. Phys. Lett. 38 030301Google Scholar

    [65]

    Zhai L J, Huang G Y, Yin S 2021 Phys. Rev. B 104 014202

    [66]

    Lee T E 2016 Phys. Rev. Lett. 116 133903Google Scholar

    [67]

    Wang X R, Guo C X, Kou S P 2020 Phys. Rev. B 101 121116Google Scholar

    [68]

    Wang X R, Guo C X, Du Q, Kou S P 2020 Chin. Phys. Lett. 37 117303Google Scholar

    [69]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

  • 图 1  (a)—(c)拓扑非平凡态, 临界和拓扑平凡态的能谱. 颜色表示能量对应的波函数的IPR. 参数为 (a) $ {t_1} = 0.4 $; (b) ${t_1} = $$ 1.58$; (c) $ {t_1} = 2.5 $. (d)—(f) 分别对应图(a)—(c)中所有本征态在空间的分布. 其余的参数为: $\gamma = 0.4$, 系统的尺寸L为80

    Fig. 1.  (a)–(c) The eigenenergies of topological nontrivial, critical and topological trivial phases with different parameters: (a) $ {t_1} = 0.4 $; (b) $ {t_1} = 1.58 $; (c) $ {t_1} = 2.5 $. The color denotes the IPR of the eigenstates corresponding to the eigenenergies. (d)–(f) The corresponding eigenstates in real space for Figure (a)–(c), respectively. The remaining parameter is $\gamma = 0.4$. The length of the lattice is 80.

    图 2  (a) 平均逆参与率(MIPR)随参数${t_1}$变化. 参数为 $\gamma = 0.4$, $L = 80$. (b) 平均逆参与率与晶格尺寸L的标度. 绿色线对应${t_1} = 0.4$, $\gamma = 0$. 其他颜色的线分别对应不同的${t_1}$, $\gamma = 0.4$

    Fig. 2.  (a) MIPR varies with $ {t_1} $, other parameters are$\gamma = 0.4$ and $L = 80$; (b) finite-size scaling of MIPR for different $ {t_1} $. The green line corresponds to ${t_1} = 0.4$, $\gamma = 0$, and the other lines correspond to different ${t_1}$with $\gamma = 0.4$.

    图 3  (a) ${t_1} \text- \gamma$平面的相图. 红色为拓扑相区域, 体边对应率是0.5, 此时存在DES. (b) 体边对应率随微扰大小变化. 当微扰为零时, ${R_{\rm BBC}}$为0.5, 当微扰增大时, ${R_{\rm BBC}}$ 迅速增加到1. 其余参数为$ {t_1} = 0.4 $, $\gamma = 0.4$以及$L = 80$

    Fig. 3.  (a) Phase diagram in ${t_1} \text- \gamma$ plane. The phase is topological nontrivial in the red regions, where the value of BBC ratio is 0.5. And there exists DES. (b) ${R_{BBC}}$varies with the disturbance $\Delta $ . When the disturbance is zero, the value of ${R_{\rm BBC}}$is 0.5, and when the disturbance increases, the value of ${R_{\rm BBC}}$ jumps to 1. The remaining parameters are $ {t_1} = 0.4 $, $\gamma = 0.4$ and $L = 80$.

    图 4  (a), (b) 开边界条件下的能谱. 红色点表示拓扑零能, 蓝色表示体态本征能量. (c)—(e) 不同无序强度d下的波函数. 黑色线表示体态的波函数, 红色线表示拓扑零能对应的拓扑边缘态的波函数. 无序强度分别为 (c)$ d = 0 $, (d) $ d = 0.5 $, (e)$ d = 1 $. 其余参数为 $ {t_1} = 0.4 $, $\gamma = 0.4$以及$L = 80$.

    Fig. 4.  (a), (b) Energy spectra under the open boundary condition. The red dots are topological zero-mode. (c)–(e) The eigenstate wave functions with different disorders d. The black curves are the bulk-state wave functions and the red curves are the zero-mode wave functions. The disorder strength is: (c) d = 0, (d) d = 0.5, (e) d = 1. The remaining parameters are $ {t_1} $ = 0.4, $\gamma = 0.4$ and L = 80.

    图 5  (a) 平均逆参与率与晶格尺寸L的标度. 所有线对应$ {t_1} = 0.4 $. 其中绿色线对应$d = 0$, $\gamma = 0$. 红色线对应$d = 0.5$, $\gamma = 0$. 其他颜色的线分别对应不同的$d$, $\gamma = 0.4$. (b) 平均逆参与率(MIPR)随无序强度$d$变化. 参数为$ {t_1} = 0.4 $, $\gamma = 0.4$, $L = 100$

    Fig. 5.  (a) Finite-size scaling of MIPR for different $d$. All the lines correspond to ${t_1} = 0.4$.The green line corresponds to $d = 0$, $\gamma = 0$ and the red line corresponds to $d = 0.5$, $\gamma = 0$. The other lines correspond to different $d$with $\gamma = 0.4$. (b) MIPR varies with $d$, other parameters are$ {t_1} = 0.4 $, $\gamma = 0.4$ and $L = 100$.

  • [1]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [2]

    Moore J E, Balents L 2007 Phys. Rev. B 75 121306Google Scholar

    [3]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [4]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [5]

    陈增军, 宁西京 2003 物理学报 52 2683Google Scholar

    Chen Z J, Ning X J 2003 Acta Phys. Sin. 52 2683Google Scholar

    [6]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [7]

    王洪飞, 解碧野, 詹鹏, 卢明辉, 陈延锋 2019 物理学报 68 224206Google Scholar

    Wang H F, Xie B Y, Zhan P, Lu M H, Chen Y F 2019 Acta Phys. Sin. 68 224206Google Scholar

    [8]

    孙孔浩, 易为 2021 物理学报 70 230309Google Scholar

    Sun K H, Yi W 2021 Acta Phys. Sin. 70 230309Google Scholar

    [9]

    沈瑞昌, 张国强, 王逸璞, 游建强 2019 物理学报 68 230305Google Scholar

    Shen R C, Zhang G Q, Wang Y P, You J Q 2019 Acta Phys. Sin. 68 230305Google Scholar

    [10]

    王学友, 王宇飞, 郑婉华 2020 物理学报 69 024202Google Scholar

    Wang X Y, Wang Y F, Zheng W H 2020 Acta Phys. Sin 69 024202Google Scholar

    [11]

    Zhou L W, Han W Q 2021 Chin. Phys. B 30 100308Google Scholar

    [12]

    Zhang S M, Jin L, Song Z 2022 Chin. Phys. B 31 010312Google Scholar

    [13]

    Wang J H, Tao Y L, Xu Y 2022 Chin. Phys. Lett. 39 010301Google Scholar

    [14]

    Cheng Z, Yu Z H 2021 Chin. Phys. Lett. 38 070302Google Scholar

    [15]

    Li L, Lee C H, Mu S, Gong J 2020 Nat. Commun. 11 5491Google Scholar

    [16]

    Lee C H, Li L, Thomale R, Gong J 2020 Phys. Rev. B 102 085151Google Scholar

    [17]

    Liu J S, Han Y Z, Liu C S 2020 Chin. Phys. B 29 010302Google Scholar

    [18]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801Google Scholar

    [19]

    Longhi S 2019 Phys. Rev. Res. 1 023013Google Scholar

    [20]

    Wang H, Ruan J, Zhang H 2019 Phys. Rev. B 99 075130Google Scholar

    [21]

    Jiang H, Lang L J, Yang C, Zhu S L, Chen S 2019 Phys. Rev. B 100 54301Google Scholar

    [22]

    Zeng Q B, Xu Y 2020 Phys. Rev. Res. 2 033052Google Scholar

    [23]

    Liu T, Zhang Y R, Ai Q, Gong Z, Kawabata K, Ueda M, Nori F 2019 Phys. Rev. Lett. 122 076801Google Scholar

    [24]

    Lee C H, Longhi S 2020 Commun. Phys. 3 147Google Scholar

    [25]

    Lee C H, Thomale R 2019 Phys. Rev. B 99 201103Google Scholar

    [26]

    Deng T S, Yi W 2019 Phys. Rev. B 100 035102Google Scholar

    [27]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801Google Scholar

    [28]

    Kawabata K, Shiozaki K, Ueda M, Sato M 2019 Phys. Rev. X 9 041015

    [29]

    Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402Google Scholar

    [30]

    Longhi S 2020 Phys. Rev. Lett. 124 066602Google Scholar

    [31]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [32]

    Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402Google Scholar

    [33]

    Yokomizo K, Murakami S 2019 Phys. Rev. Lett. 123 066404Google Scholar

    [34]

    Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [35]

    Ghatak A, Das T 2019 J. Phys. Condens. Matter 31 263001Google Scholar

    [36]

    Jin L, Song Z 2019 Phys. Rev. B 99 081103Google Scholar

    [37]

    Kawabata K, Shiozaki K, Ueda M 2018 Phys. Rev. B 98 165148Google Scholar

    [38]

    Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar

    [39]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808Google Scholar

    [40]

    Cao P C, Peng Y G, Li Y, Zhu X F 2022 Chin. Phys. Lett. 39 057801Google Scholar

    [41]

    Bergholtz E J, Budich J C, Kunst F K 2021 Rev. Mod. Phys. 93 015005Google Scholar

    [42]

    Araki H, Yoshida T, Hatsugai Y 2021 J. Phys. Soc. Jpn. 90 053703Google Scholar

    [43]

    Luo X W, Zhang C 2019 Phys. Rev. Lett. 123 073601Google Scholar

    [44]

    Yi Y, Yang Z 2020 Phys. Rev. Lett. 125 186802Google Scholar

    [45]

    Fu Y, Hu J, Wan S 2021 Phys. Rev. B 103 045420Google Scholar

    [46]

    Cao Y, Li Y, Yang X 2021 Phys. Rev. B 103 075126Google Scholar

    [47]

    Hu Y M, Song F, Wang Z 2021 Acta Phys. Sin. 70 230307Google Scholar

    [48]

    Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M, Thomale R 2020 Nature Phys. 16 747Google Scholar

    [49]

    Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R, Szameit A 2020 Science 368 311Google Scholar

    [50]

    Gou W, Chen T, Xie D, Xiao T, Deng T S, Gadway B, Yi W, Yan B 2020 Phys. Rev. Lett. 124 070402Google Scholar

    [51]

    Yoshida T, Mizoguchi T, Hatsugai Y 2020 Phys. Rev. Res. 2 022062Google Scholar

    [52]

    Mandal S, Banerjee R, Ostrovskaya E A, Liew T C H 2020 Phys. Rev. Lett. 125 123902Google Scholar

    [53]

    Gao P, Willatzen M, Christensen J 2020 Phys. Rev. Lett. 125 206402Google Scholar

    [54]

    Zhu X, Wang H, Gupta S K, Zhang H, Xie B, Lu M, Chen Y 2020 Phys. Rev. Res. 2 013280Google Scholar

    [55]

    Hofmann T, Helbig T, Schindler F, Salgo N, Brzezińska M, Greiter M, Kiessling T, Wolf D, Vollhardt A, Kabaši A, Lee C H, Bilusic A, Thomale R, Neupert T 2020 Phys. Rev. Res. 2 023265Google Scholar

    [56]

    Brandenbourger M, Locsin X, Lerner E, Coulais C 2019 Nat. Commun. 10 4608Google Scholar

    [57]

    Rosa M I N, Ruzzene M 2020 New J. Phys. 22 053004Google Scholar

    [58]

    Zhong J, Wang K, Park Y, Asadchy V, Wojcik C C, Dutt A, Fan S 2021 Phys. Rev. B 104 125416Google Scholar

    [59]

    Zhang L, Yang Y, Ge Y, Guan Y J, Chen Q, Yan Q, Chen F, Xi R, Li Y, Jia D, Yuan S Q, Sun H X, Chen H, Zhang B 2021 Nat. Commun. 12 6297Google Scholar

    [60]

    Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761Google Scholar

    [61]

    Wu H, An J H 2020 Phys. Rev. B 102 041119Google Scholar

    [62]

    Rudner M S, Lindner N H, Berg E, Levin M 2013 Phys. Rev. X 3 031005

    [63]

    Yao S, Yan Z, Wang Z 2017 Phys. Rev. B 96 195303Google Scholar

    [64]

    Li T Y, Zhang Y S, Yi W 2021 Chin. Phys. Lett. 38 030301Google Scholar

    [65]

    Zhai L J, Huang G Y, Yin S 2021 Phys. Rev. B 104 014202

    [66]

    Lee T E 2016 Phys. Rev. Lett. 116 133903Google Scholar

    [67]

    Wang X R, Guo C X, Kou S P 2020 Phys. Rev. B 101 121116Google Scholar

    [68]

    Wang X R, Guo C X, Du Q, Kou S P 2020 Chin. Phys. Lett. 37 117303Google Scholar

    [69]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

  • [1] 黄泽鑫, 圣宗强, 程乐乐, 曹三祝, 陈华俊, 吴宏伟. 一维非互易声学晶体的非厄米趋肤态操控. 物理学报, 2024, 73(21): 214301. doi: 10.7498/aps.73.20241087
    [2] 古燕, 陆展鹏. 非厄米耦合链中的局域化转变. 物理学报, 2024, 73(19): 197101. doi: 10.7498/aps.73.20240976
    [3] 刘敬鹄, 徐志浩. 随机两体耗散诱导的非厄米多体局域化. 物理学报, 2024, 73(7): 077202. doi: 10.7498/aps.73.20231987
    [4] 刘辉, 陆展鹏, 徐志浩. 一维非厄米十字晶格中的退局域-局域转变. 物理学报, 2024, 73(13): 137201. doi: 10.7498/aps.73.20240510
    [5] 徐灿鸿, 许志聪, 周子榆, 成恩宏, 郎利君. 非厄米格点模型的经典电路模拟. 物理学报, 2023, 72(20): 200301. doi: 10.7498/aps.72.20230914
    [6] 杨艳丽, 段志磊, 薛海斌. 非厄米Su-Schrieffer-Heeger链边缘态和趋肤效应依赖的电子输运特性. 物理学报, 2023, 72(24): 247301. doi: 10.7498/aps.72.20231286
    [7] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5—10 µm波段超导单光子探测器设计与研制. 物理学报, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [8] 成恩宏, 郎利君. 非互易Aubry-André 模型的经典电路模拟. 物理学报, 2022, 71(16): 160301. doi: 10.7498/aps.71.20220219
    [9] 吴瑾, 陆展鹏, 徐志浩, 郭利平. 由超辐射引起的迁移率边和重返局域化. 物理学报, 2022, 71(11): 113702. doi: 10.7498/aps.71.20212246
    [10] 侯博, 曾琦波. 非厄米镶嵌型二聚化晶格. 物理学报, 2022, 71(13): 130302. doi: 10.7498/aps.71.20220890
    [11] 陈舒越, 蒋闯, 柯少林, 王兵, 陆培祥. 基于Aharonov-Bohm笼的非厄米趋肤效应抑制现象. 物理学报, 2022, 71(17): 174201. doi: 10.7498/aps.71.20220978
    [12] 邓天舒. 畴壁系统中的非厄米趋肤效应. 物理学报, 2022, 71(17): 170306. doi: 10.7498/aps.71.20221087
    [13] 胡渝民, 宋飞, 汪忠. 广义布里渊区与非厄米能带理论. 物理学报, 2021, 70(23): 230307. doi: 10.7498/aps.70.20211908
    [14] 傅聪, 叶梦浩, 赵晖, 陈宇光, 鄢永红. 共轭聚合物链中光激发过程的无序效应. 物理学报, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [15] 徐志浩, 皇甫宏丽, 张云波. 一维准周期晶格中玻色子对的迁移率边. 物理学报, 2019, 68(8): 087201. doi: 10.7498/aps.68.20182218
    [16] 王晓, 陈立潮, 刘艳红, 石云龙, 孙勇. 纵模对光子晶体中类狄拉克点传输特性的影响. 物理学报, 2015, 64(17): 174206. doi: 10.7498/aps.64.174206
    [17] 侯碧辉, 刘凤艳, 岳明, 王克军. 纳米金属镝的传导电子定域化. 物理学报, 2011, 60(1): 017201. doi: 10.7498/aps.60.017201
    [18] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 无序对二维声子晶体平板负折射成像的影响. 物理学报, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [19] 刘小良, 徐 慧, 马松山, 宋招权. 一维无序二元固体中电子局域性质的研究. 物理学报, 2006, 55(6): 2949-2954. doi: 10.7498/aps.55.2949
    [20] 许兴胜, 陈弘达, 张道中. 非晶光子晶体中的光子局域化. 物理学报, 2006, 55(12): 6430-6434. doi: 10.7498/aps.55.6430
计量
  • 文章访问数:  5455
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-10
  • 修回日期:  2022-07-11
  • 上网日期:  2022-11-04
  • 刊出日期:  2022-11-20

/

返回文章
返回